具有马尔可夫切换拓扑和加性噪声的非线性多智能体系统的鲁棒神经自适应二部形成控制

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xin Li, Jie Wu, Xisheng Zhan, Lingli Cheng, Qingsheng Yang
{"title":"具有马尔可夫切换拓扑和加性噪声的非线性多智能体系统的鲁棒神经自适应二部形成控制","authors":"Xin Li,&nbsp;Jie Wu,&nbsp;Xisheng Zhan,&nbsp;Lingli Cheng,&nbsp;Qingsheng Yang","doi":"10.1016/j.neucom.2025.130655","DOIUrl":null,"url":null,"abstract":"<div><div>This article explores the problem of robust neuro-adaptive bipartite time-varying formation (BTVF) control for nonlinear multi-agent systems (MASs) under Markovian randomly switching topologies and additive noise. Both leaderless and leader-following cases are considered, with the communication topology modeled as a continuous-time Markov chain. Additionally, the impact of communication noise in realistic scenarios is addressed. To mitigate disturbances and nonlinearities, an adaptive control strategy incorporating neural network (NN) approximation is employed. With the aid of the infinitesimal generator and the indicator function, the expected leaderless and leader-following BTVF can be achieved. Towards the end, the proposed theoretical method is confirmed through two numerical examples.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"648 ","pages":"Article 130655"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust neuro-adaptive bipartite formation control for nonlinear multi-agent systems subject to Markovian switching topologies and additive noise\",\"authors\":\"Xin Li,&nbsp;Jie Wu,&nbsp;Xisheng Zhan,&nbsp;Lingli Cheng,&nbsp;Qingsheng Yang\",\"doi\":\"10.1016/j.neucom.2025.130655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article explores the problem of robust neuro-adaptive bipartite time-varying formation (BTVF) control for nonlinear multi-agent systems (MASs) under Markovian randomly switching topologies and additive noise. Both leaderless and leader-following cases are considered, with the communication topology modeled as a continuous-time Markov chain. Additionally, the impact of communication noise in realistic scenarios is addressed. To mitigate disturbances and nonlinearities, an adaptive control strategy incorporating neural network (NN) approximation is employed. With the aid of the infinitesimal generator and the indicator function, the expected leaderless and leader-following BTVF can be achieved. Towards the end, the proposed theoretical method is confirmed through two numerical examples.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"648 \",\"pages\":\"Article 130655\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092523122501327X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092523122501327X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

研究了非线性多智能体系统在马尔可夫随机切换拓扑和加性噪声条件下的鲁棒神经自适应二部时变形成控制问题。考虑了无领导和领导跟随两种情况,并将通信拓扑建模为连续时间马尔可夫链。此外,通信噪声在现实情况下的影响是解决。为了减轻扰动和非线性,采用了一种结合神经网络逼近的自适应控制策略。借助无穷小生成器和指示函数,可以实现预期的无领导和跟随领导的BTVF。最后,通过两个算例对所提出的理论方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust neuro-adaptive bipartite formation control for nonlinear multi-agent systems subject to Markovian switching topologies and additive noise
This article explores the problem of robust neuro-adaptive bipartite time-varying formation (BTVF) control for nonlinear multi-agent systems (MASs) under Markovian randomly switching topologies and additive noise. Both leaderless and leader-following cases are considered, with the communication topology modeled as a continuous-time Markov chain. Additionally, the impact of communication noise in realistic scenarios is addressed. To mitigate disturbances and nonlinearities, an adaptive control strategy incorporating neural network (NN) approximation is employed. With the aid of the infinitesimal generator and the indicator function, the expected leaderless and leader-following BTVF can be achieved. Towards the end, the proposed theoretical method is confirmed through two numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信