类kdv孤子气体:可积与不可积模型的异同

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Ekaterina Didenkulova , Marcelo V. Flamarion , Efim Pelinovsky
{"title":"类kdv孤子气体:可积与不可积模型的异同","authors":"Ekaterina Didenkulova ,&nbsp;Marcelo V. Flamarion ,&nbsp;Efim Pelinovsky","doi":"10.1016/j.physd.2025.134815","DOIUrl":null,"url":null,"abstract":"<div><div>A comparison of the statistical characteristics of a rarefied soliton gas is carried out within the framework of integrable and non-integrable equations from the Korteweg-de Vries (KdV) hierarchy. As examples, multi-soliton solutions of the modified KdV equation, and the modular Schamel equation are considered. A common property of the dynamics of bipolar solitons is the formation of rogue waves, which do not occur in unipolar gases. The fourth moment of the wave field (kurtosis) increases compared to the initial value in the case of a bipolar gas, and decreases for a unipolar gas. In the case of integrable KdV equations, the characteristics of the soliton gas reach a stationary level, while in non-integrable equations they remain functions of time. The inelastic transfer of energy from small solitons to large ones occur, and large waves become “more extreme” against the background of small solitons. The tendency of the occurrence of an anomalously large wave (soliton - champion) in non-integrable systems are discussed.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"481 ","pages":"Article 134815"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KdV-like soliton gas: similarity and difference in integrable and non-integrable models\",\"authors\":\"Ekaterina Didenkulova ,&nbsp;Marcelo V. Flamarion ,&nbsp;Efim Pelinovsky\",\"doi\":\"10.1016/j.physd.2025.134815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A comparison of the statistical characteristics of a rarefied soliton gas is carried out within the framework of integrable and non-integrable equations from the Korteweg-de Vries (KdV) hierarchy. As examples, multi-soliton solutions of the modified KdV equation, and the modular Schamel equation are considered. A common property of the dynamics of bipolar solitons is the formation of rogue waves, which do not occur in unipolar gases. The fourth moment of the wave field (kurtosis) increases compared to the initial value in the case of a bipolar gas, and decreases for a unipolar gas. In the case of integrable KdV equations, the characteristics of the soliton gas reach a stationary level, while in non-integrable equations they remain functions of time. The inelastic transfer of energy from small solitons to large ones occur, and large waves become “more extreme” against the background of small solitons. The tendency of the occurrence of an anomalously large wave (soliton - champion) in non-integrable systems are discussed.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"481 \",\"pages\":\"Article 134815\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925002921\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925002921","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在Korteweg-de Vries (KdV)层次的可积方程和不可积方程的框架内,对稀薄孤子气体的统计特性进行了比较。作为例子,考虑了修正KdV方程和模Schamel方程的多孤子解。双极孤子动力学的一个共同特性是异常波的形成,这在单极气体中是不会发生的。在双极气体中,波场的第四矩(峰度)比初始值增加,而在单极气体中则减少。在可积KdV方程中,孤子气体的特性达到平稳水平,而在不可积方程中,孤子气体的特性仍然是时间的函数。能量从小孤子到大孤子的非弹性传递发生了,在小孤子的背景下,大波变得“更加极端”。讨论了不可积系统中异常大波(孤子-冠军)的发生趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KdV-like soliton gas: similarity and difference in integrable and non-integrable models
A comparison of the statistical characteristics of a rarefied soliton gas is carried out within the framework of integrable and non-integrable equations from the Korteweg-de Vries (KdV) hierarchy. As examples, multi-soliton solutions of the modified KdV equation, and the modular Schamel equation are considered. A common property of the dynamics of bipolar solitons is the formation of rogue waves, which do not occur in unipolar gases. The fourth moment of the wave field (kurtosis) increases compared to the initial value in the case of a bipolar gas, and decreases for a unipolar gas. In the case of integrable KdV equations, the characteristics of the soliton gas reach a stationary level, while in non-integrable equations they remain functions of time. The inelastic transfer of energy from small solitons to large ones occur, and large waves become “more extreme” against the background of small solitons. The tendency of the occurrence of an anomalously large wave (soliton - champion) in non-integrable systems are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信