Ta/ mo基垂直磁性隧道结的调压磁性和增强热耐久性

IF 2.5 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
S. Wu, G.J. Lim, F.N. Tan, T.L. Jin, C.C.I. Ang, K.J. Cheng, W.S. Lew
{"title":"Ta/ mo基垂直磁性隧道结的调压磁性和增强热耐久性","authors":"S. Wu,&nbsp;G.J. Lim,&nbsp;F.N. Tan,&nbsp;T.L. Jin,&nbsp;C.C.I. Ang,&nbsp;K.J. Cheng,&nbsp;W.S. Lew","doi":"10.1016/j.jmmm.2025.173293","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we experimentally demonstrate Ta/Mo-based perpendicular magnetic tunnel junctions (pMTJs) with a double CoFeB free layer, engineered to leverage the complementary properties of the strong spin–orbit coupling of Ta and the interfacial anisotropy enhancement of Mo. The Ta/Mo bilayer significantly improves interfacial stability, perpendicular magnetic anisotropy (PMA) and thermal endurance, allowing the device to sustain PMA up to 550 °C, surpassing the thermal limits of conventional Ta-based structures. Furthermore, the application of gate voltage enables efficient modulation of the anisotropy field and coercivity, leading to a 23% reduction in switching current, demonstrating the efficacy of voltage-controlled magnetic anisotropy (VCMA) in lowering the energy barrier for magnetization reversal. This synergistic combination of spin–orbit torque (SOT) and VCMA mechanisms highlights the potential of the optimized Ta/Mo system for energy-efficient, high-performance memory and logic applications with low power consumption under elevated thermal conditions.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"629 ","pages":"Article 173293"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Voltage-modulated magnetic properties and enhanced thermal endurance in Ta/Mo-based perpendicular magnetic tunnel junctions\",\"authors\":\"S. Wu,&nbsp;G.J. Lim,&nbsp;F.N. Tan,&nbsp;T.L. Jin,&nbsp;C.C.I. Ang,&nbsp;K.J. Cheng,&nbsp;W.S. Lew\",\"doi\":\"10.1016/j.jmmm.2025.173293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we experimentally demonstrate Ta/Mo-based perpendicular magnetic tunnel junctions (pMTJs) with a double CoFeB free layer, engineered to leverage the complementary properties of the strong spin–orbit coupling of Ta and the interfacial anisotropy enhancement of Mo. The Ta/Mo bilayer significantly improves interfacial stability, perpendicular magnetic anisotropy (PMA) and thermal endurance, allowing the device to sustain PMA up to 550 °C, surpassing the thermal limits of conventional Ta-based structures. Furthermore, the application of gate voltage enables efficient modulation of the anisotropy field and coercivity, leading to a 23% reduction in switching current, demonstrating the efficacy of voltage-controlled magnetic anisotropy (VCMA) in lowering the energy barrier for magnetization reversal. This synergistic combination of spin–orbit torque (SOT) and VCMA mechanisms highlights the potential of the optimized Ta/Mo system for energy-efficient, high-performance memory and logic applications with low power consumption under elevated thermal conditions.</div></div>\",\"PeriodicalId\":366,\"journal\":{\"name\":\"Journal of Magnetism and Magnetic Materials\",\"volume\":\"629 \",\"pages\":\"Article 173293\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetism and Magnetic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304885325005256\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304885325005256","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们通过实验证明了Ta/Mo基垂直磁隧道结(pMTJs)具有双CoFeB自由层,旨在利用Ta的强自旋-轨道耦合和Mo的界面各向异性增强的互补特性。Ta/Mo双分子层显著提高了界面稳定性,垂直磁各向异性(PMA)和热耐力,使器件的PMA维持在550°C以下。超越了传统的钽基结构的热极限。此外,栅极电压的应用可以有效地调制各向异性场和矫顽力,导致开关电流减少23%,证明了压控磁各向异性(VCMA)在降低磁化反转的能量势垒方面的有效性。这种自旋轨道扭矩(SOT)和VCMA机制的协同组合凸显了优化后的Ta/Mo系统在高热条件下低功耗、节能、高性能存储和逻辑应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Voltage-modulated magnetic properties and enhanced thermal endurance in Ta/Mo-based perpendicular magnetic tunnel junctions
In this work, we experimentally demonstrate Ta/Mo-based perpendicular magnetic tunnel junctions (pMTJs) with a double CoFeB free layer, engineered to leverage the complementary properties of the strong spin–orbit coupling of Ta and the interfacial anisotropy enhancement of Mo. The Ta/Mo bilayer significantly improves interfacial stability, perpendicular magnetic anisotropy (PMA) and thermal endurance, allowing the device to sustain PMA up to 550 °C, surpassing the thermal limits of conventional Ta-based structures. Furthermore, the application of gate voltage enables efficient modulation of the anisotropy field and coercivity, leading to a 23% reduction in switching current, demonstrating the efficacy of voltage-controlled magnetic anisotropy (VCMA) in lowering the energy barrier for magnetization reversal. This synergistic combination of spin–orbit torque (SOT) and VCMA mechanisms highlights the potential of the optimized Ta/Mo system for energy-efficient, high-performance memory and logic applications with low power consumption under elevated thermal conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Magnetism and Magnetic Materials
Journal of Magnetism and Magnetic Materials 物理-材料科学:综合
CiteScore
5.30
自引率
11.10%
发文量
1149
审稿时长
59 days
期刊介绍: The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public. Main Categories: Full-length articles: Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged. In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications. The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications. The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism. Review articles: Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信