Diana Hawashin , Khaled Salah , Raja Jayaraman , Ibrar Yaqoob
{"title":"利用机器学习和区块链对工厂的超长工作时间进行可靠的检测和监控","authors":"Diana Hawashin , Khaled Salah , Raja Jayaraman , Ibrar Yaqoob","doi":"10.1016/j.techsoc.2025.102959","DOIUrl":null,"url":null,"abstract":"<div><div>The Organisation for Economic Co-operation and Development (OECD) Due Diligence Guidance emphasizes the importance of managing working hours to protect the rights of workers. Excessive hours pose serious health risks, which highlights the need for robust detection and reporting systems. However, many of today’s systems, methods, and technologies used for managing labor hours lack traceability, auditability, accountability, and trust. Additionally, they are centralized and manual or paper-based, which makes them vulnerable to manipulation as they are controlled by a limited number of entities. In this paper, we present a machine learning and blockchain-based solution to automate the detection of excessive working hours in a manner that is decentralized, as part of an antitrust coalition, with regulated transparency, traceability, auditability, and trustworthiness. We develop smart contracts to automate compliance reporting and manage large datasets off-chain through decentralized storage. The proposed system achieves a detection accuracy of 96.6% and a precision of 92%. We conduct a comprehensive evaluation of the proposed solution, including cost analysis, security assessment, and performance evaluation of the worker detection component. By comparing our solution to existing safety monitoring systems, we demonstrate its superior automation, traceability, and trustworthiness. The proposed solution not only enhances worker safety and compliance with OECD guidelines but also contributes to sustainability in industrial environments.</div></div>","PeriodicalId":47979,"journal":{"name":"Technology in Society","volume":"83 ","pages":"Article 102959"},"PeriodicalIF":12.5000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using machine learning and blockchain for trusted detection and monitoring of excessive working hours in factories\",\"authors\":\"Diana Hawashin , Khaled Salah , Raja Jayaraman , Ibrar Yaqoob\",\"doi\":\"10.1016/j.techsoc.2025.102959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Organisation for Economic Co-operation and Development (OECD) Due Diligence Guidance emphasizes the importance of managing working hours to protect the rights of workers. Excessive hours pose serious health risks, which highlights the need for robust detection and reporting systems. However, many of today’s systems, methods, and technologies used for managing labor hours lack traceability, auditability, accountability, and trust. Additionally, they are centralized and manual or paper-based, which makes them vulnerable to manipulation as they are controlled by a limited number of entities. In this paper, we present a machine learning and blockchain-based solution to automate the detection of excessive working hours in a manner that is decentralized, as part of an antitrust coalition, with regulated transparency, traceability, auditability, and trustworthiness. We develop smart contracts to automate compliance reporting and manage large datasets off-chain through decentralized storage. The proposed system achieves a detection accuracy of 96.6% and a precision of 92%. We conduct a comprehensive evaluation of the proposed solution, including cost analysis, security assessment, and performance evaluation of the worker detection component. By comparing our solution to existing safety monitoring systems, we demonstrate its superior automation, traceability, and trustworthiness. The proposed solution not only enhances worker safety and compliance with OECD guidelines but also contributes to sustainability in industrial environments.</div></div>\",\"PeriodicalId\":47979,\"journal\":{\"name\":\"Technology in Society\",\"volume\":\"83 \",\"pages\":\"Article 102959\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technology in Society\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0160791X25001496\",\"RegionNum\":1,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL ISSUES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology in Society","FirstCategoryId":"90","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0160791X25001496","RegionNum":1,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL ISSUES","Score":null,"Total":0}
Using machine learning and blockchain for trusted detection and monitoring of excessive working hours in factories
The Organisation for Economic Co-operation and Development (OECD) Due Diligence Guidance emphasizes the importance of managing working hours to protect the rights of workers. Excessive hours pose serious health risks, which highlights the need for robust detection and reporting systems. However, many of today’s systems, methods, and technologies used for managing labor hours lack traceability, auditability, accountability, and trust. Additionally, they are centralized and manual or paper-based, which makes them vulnerable to manipulation as they are controlled by a limited number of entities. In this paper, we present a machine learning and blockchain-based solution to automate the detection of excessive working hours in a manner that is decentralized, as part of an antitrust coalition, with regulated transparency, traceability, auditability, and trustworthiness. We develop smart contracts to automate compliance reporting and manage large datasets off-chain through decentralized storage. The proposed system achieves a detection accuracy of 96.6% and a precision of 92%. We conduct a comprehensive evaluation of the proposed solution, including cost analysis, security assessment, and performance evaluation of the worker detection component. By comparing our solution to existing safety monitoring systems, we demonstrate its superior automation, traceability, and trustworthiness. The proposed solution not only enhances worker safety and compliance with OECD guidelines but also contributes to sustainability in industrial environments.
期刊介绍:
Technology in Society is a global journal dedicated to fostering discourse at the crossroads of technological change and the social, economic, business, and philosophical transformation of our world. The journal aims to provide scholarly contributions that empower decision-makers to thoughtfully and intentionally navigate the decisions shaping this dynamic landscape. A common thread across these fields is the role of technology in society, influencing economic, political, and cultural dynamics. Scholarly work in Technology in Society delves into the social forces shaping technological decisions and the societal choices regarding technology use. This encompasses scholarly and theoretical approaches (history and philosophy of science and technology, technology forecasting, economic growth, and policy, ethics), applied approaches (business innovation, technology management, legal and engineering), and developmental perspectives (technology transfer, technology assessment, and economic development). Detailed information about the journal's aims and scope on specific topics can be found in Technology in Society Briefings, accessible via our Special Issues and Article Collections.