{"title":"高压下三元包合物Y-Mg-H的相图和超导性的系统研究","authors":"Boyuan Yang, Zhen Qin, Xiao Jiang, Shichang Li, Bole Chen, Ying Chang, Chunbao Feng, Dengfeng Li","doi":"10.1016/j.commatsci.2025.114024","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates promising candidates for high <em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span> superconductors within hydrogen-dominated compounds. Through integration of swarm-intelligence structural searches with DFT simulations, we systematically examined phase stability and superconducting properties in the Y–Mg–H ternary system across high-pressure regimes (100–250 GPa). For the predicted candidate structures of Y–Mg–H systems, to investigate the bonding behavior of stable phases, we examined the pressure-induced phase diagrams and thermodynamic convex hulls across a broad range of compositions, and also conducting a detailed analysis of the electronic structure of all predicted phases. To evaluate the superconductivity, we conducted systematic phonon spectrum calculations on the predicted stable structures to assess their <em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span>. Our analysis reveals that hydrogen-derived states predominantly govern the <em>E</em><span><math><msub><mrow></mrow><mrow><mi>F</mi></mrow></msub></math></span> electronic structure, serving as a critical determinant for elevated <em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span>. Electron–phonon interaction analysis further demonstrates hydrogen-dominated lattice vibrations significantly boost the coupling strength, thereby establishing fundamental phonon-mediated mechanisms for high-<em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span> realization. Combined with the obtained <span><math><mi>λ</mi></math></span>, we calculated the <em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span> of these compounds using the Allen–Dynes modified McMillan equation. The results indicate that <span><math><mrow><mi>P</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>̄</mo></mrow></mover><mi>m</mi><mn>1</mn></mrow></math></span>-Y<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>MgH<span><math><msub><mrow></mrow><mrow><mn>18</mn></mrow></msub></math></span> has the highest estimated <em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span> of 235 K at 140 GPa (with <span><math><mi>μ</mi></math></span> = 0.1), followed by <span><math><mrow><mi>R</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>̄</mo></mrow></mover><mi>m</mi></mrow></math></span>-YMg<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>24</mn></mrow></msub></math></span> (224 K at 140 GPa), <span><math><mrow><mi>P</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>̄</mo></mrow></mover><mi>m</mi><mn>1</mn></mrow></math></span>-YMg<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>18</mn></mrow></msub></math></span> (213 K at 140 GPa), and <span><math><mrow><mi>F</mi><mi>d</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>̄</mo></mrow></mover><mi>m</mi></mrow></math></span>-YMgH<span><math><msub><mrow></mrow><mrow><mn>12</mn></mrow></msub></math></span> at a higher pressure of 190 GPa (220 K). These findings demonstrate that by optimizing the structure of the Y–Mg–H system, it is possible to achieve higher <em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span> at relatively lower pressures (e.g., below 200 GPa), providing new directions and ideas for the research of high-temperature superconducting materials.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"258 ","pages":"Article 114024"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systematic study on the phase diagram and superconductivity of ternary clathrate Y–Mg–H under high pressures\",\"authors\":\"Boyuan Yang, Zhen Qin, Xiao Jiang, Shichang Li, Bole Chen, Ying Chang, Chunbao Feng, Dengfeng Li\",\"doi\":\"10.1016/j.commatsci.2025.114024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates promising candidates for high <em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span> superconductors within hydrogen-dominated compounds. Through integration of swarm-intelligence structural searches with DFT simulations, we systematically examined phase stability and superconducting properties in the Y–Mg–H ternary system across high-pressure regimes (100–250 GPa). For the predicted candidate structures of Y–Mg–H systems, to investigate the bonding behavior of stable phases, we examined the pressure-induced phase diagrams and thermodynamic convex hulls across a broad range of compositions, and also conducting a detailed analysis of the electronic structure of all predicted phases. To evaluate the superconductivity, we conducted systematic phonon spectrum calculations on the predicted stable structures to assess their <em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span>. Our analysis reveals that hydrogen-derived states predominantly govern the <em>E</em><span><math><msub><mrow></mrow><mrow><mi>F</mi></mrow></msub></math></span> electronic structure, serving as a critical determinant for elevated <em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span>. Electron–phonon interaction analysis further demonstrates hydrogen-dominated lattice vibrations significantly boost the coupling strength, thereby establishing fundamental phonon-mediated mechanisms for high-<em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span> realization. Combined with the obtained <span><math><mi>λ</mi></math></span>, we calculated the <em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span> of these compounds using the Allen–Dynes modified McMillan equation. The results indicate that <span><math><mrow><mi>P</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>̄</mo></mrow></mover><mi>m</mi><mn>1</mn></mrow></math></span>-Y<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>MgH<span><math><msub><mrow></mrow><mrow><mn>18</mn></mrow></msub></math></span> has the highest estimated <em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span> of 235 K at 140 GPa (with <span><math><mi>μ</mi></math></span> = 0.1), followed by <span><math><mrow><mi>R</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>̄</mo></mrow></mover><mi>m</mi></mrow></math></span>-YMg<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>24</mn></mrow></msub></math></span> (224 K at 140 GPa), <span><math><mrow><mi>P</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>̄</mo></mrow></mover><mi>m</mi><mn>1</mn></mrow></math></span>-YMg<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>18</mn></mrow></msub></math></span> (213 K at 140 GPa), and <span><math><mrow><mi>F</mi><mi>d</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>̄</mo></mrow></mover><mi>m</mi></mrow></math></span>-YMgH<span><math><msub><mrow></mrow><mrow><mn>12</mn></mrow></msub></math></span> at a higher pressure of 190 GPa (220 K). These findings demonstrate that by optimizing the structure of the Y–Mg–H system, it is possible to achieve higher <em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span> at relatively lower pressures (e.g., below 200 GPa), providing new directions and ideas for the research of high-temperature superconducting materials.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"258 \",\"pages\":\"Article 114024\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025625003672\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625003672","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A systematic study on the phase diagram and superconductivity of ternary clathrate Y–Mg–H under high pressures
This study investigates promising candidates for high T superconductors within hydrogen-dominated compounds. Through integration of swarm-intelligence structural searches with DFT simulations, we systematically examined phase stability and superconducting properties in the Y–Mg–H ternary system across high-pressure regimes (100–250 GPa). For the predicted candidate structures of Y–Mg–H systems, to investigate the bonding behavior of stable phases, we examined the pressure-induced phase diagrams and thermodynamic convex hulls across a broad range of compositions, and also conducting a detailed analysis of the electronic structure of all predicted phases. To evaluate the superconductivity, we conducted systematic phonon spectrum calculations on the predicted stable structures to assess their T. Our analysis reveals that hydrogen-derived states predominantly govern the E electronic structure, serving as a critical determinant for elevated T. Electron–phonon interaction analysis further demonstrates hydrogen-dominated lattice vibrations significantly boost the coupling strength, thereby establishing fundamental phonon-mediated mechanisms for high-T realization. Combined with the obtained , we calculated the T of these compounds using the Allen–Dynes modified McMillan equation. The results indicate that -YMgH has the highest estimated T of 235 K at 140 GPa (with = 0.1), followed by -YMgH (224 K at 140 GPa), -YMgH (213 K at 140 GPa), and -YMgH at a higher pressure of 190 GPa (220 K). These findings demonstrate that by optimizing the structure of the Y–Mg–H system, it is possible to achieve higher T at relatively lower pressures (e.g., below 200 GPa), providing new directions and ideas for the research of high-temperature superconducting materials.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.