高压下三元包合物Y-Mg-H的相图和超导性的系统研究

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Boyuan Yang, Zhen Qin, Xiao Jiang, Shichang Li, Bole Chen, Ying Chang, Chunbao Feng, Dengfeng Li
{"title":"高压下三元包合物Y-Mg-H的相图和超导性的系统研究","authors":"Boyuan Yang,&nbsp;Zhen Qin,&nbsp;Xiao Jiang,&nbsp;Shichang Li,&nbsp;Bole Chen,&nbsp;Ying Chang,&nbsp;Chunbao Feng,&nbsp;Dengfeng Li","doi":"10.1016/j.commatsci.2025.114024","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates promising candidates for high <em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span> superconductors within hydrogen-dominated compounds. Through integration of swarm-intelligence structural searches with DFT simulations, we systematically examined phase stability and superconducting properties in the Y–Mg–H ternary system across high-pressure regimes (100–250 GPa). For the predicted candidate structures of Y–Mg–H systems, to investigate the bonding behavior of stable phases, we examined the pressure-induced phase diagrams and thermodynamic convex hulls across a broad range of compositions, and also conducting a detailed analysis of the electronic structure of all predicted phases. To evaluate the superconductivity, we conducted systematic phonon spectrum calculations on the predicted stable structures to assess their <em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span>. Our analysis reveals that hydrogen-derived states predominantly govern the <em>E</em><span><math><msub><mrow></mrow><mrow><mi>F</mi></mrow></msub></math></span> electronic structure, serving as a critical determinant for elevated <em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span>. Electron–phonon interaction analysis further demonstrates hydrogen-dominated lattice vibrations significantly boost the coupling strength, thereby establishing fundamental phonon-mediated mechanisms for high-<em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span> realization. Combined with the obtained <span><math><mi>λ</mi></math></span>, we calculated the <em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span> of these compounds using the Allen–Dynes modified McMillan equation. The results indicate that <span><math><mrow><mi>P</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>̄</mo></mrow></mover><mi>m</mi><mn>1</mn></mrow></math></span>-Y<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>MgH<span><math><msub><mrow></mrow><mrow><mn>18</mn></mrow></msub></math></span> has the highest estimated <em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span> of 235 K at 140 GPa (with <span><math><mi>μ</mi></math></span> = 0.1), followed by <span><math><mrow><mi>R</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>̄</mo></mrow></mover><mi>m</mi></mrow></math></span>-YMg<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>24</mn></mrow></msub></math></span> (224 K at 140 GPa), <span><math><mrow><mi>P</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>̄</mo></mrow></mover><mi>m</mi><mn>1</mn></mrow></math></span>-YMg<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>18</mn></mrow></msub></math></span> (213 K at 140 GPa), and <span><math><mrow><mi>F</mi><mi>d</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>̄</mo></mrow></mover><mi>m</mi></mrow></math></span>-YMgH<span><math><msub><mrow></mrow><mrow><mn>12</mn></mrow></msub></math></span> at a higher pressure of 190 GPa (220 K). These findings demonstrate that by optimizing the structure of the Y–Mg–H system, it is possible to achieve higher <em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span> at relatively lower pressures (e.g., below 200 GPa), providing new directions and ideas for the research of high-temperature superconducting materials.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"258 ","pages":"Article 114024"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systematic study on the phase diagram and superconductivity of ternary clathrate Y–Mg–H under high pressures\",\"authors\":\"Boyuan Yang,&nbsp;Zhen Qin,&nbsp;Xiao Jiang,&nbsp;Shichang Li,&nbsp;Bole Chen,&nbsp;Ying Chang,&nbsp;Chunbao Feng,&nbsp;Dengfeng Li\",\"doi\":\"10.1016/j.commatsci.2025.114024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates promising candidates for high <em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span> superconductors within hydrogen-dominated compounds. Through integration of swarm-intelligence structural searches with DFT simulations, we systematically examined phase stability and superconducting properties in the Y–Mg–H ternary system across high-pressure regimes (100–250 GPa). For the predicted candidate structures of Y–Mg–H systems, to investigate the bonding behavior of stable phases, we examined the pressure-induced phase diagrams and thermodynamic convex hulls across a broad range of compositions, and also conducting a detailed analysis of the electronic structure of all predicted phases. To evaluate the superconductivity, we conducted systematic phonon spectrum calculations on the predicted stable structures to assess their <em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span>. Our analysis reveals that hydrogen-derived states predominantly govern the <em>E</em><span><math><msub><mrow></mrow><mrow><mi>F</mi></mrow></msub></math></span> electronic structure, serving as a critical determinant for elevated <em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span>. Electron–phonon interaction analysis further demonstrates hydrogen-dominated lattice vibrations significantly boost the coupling strength, thereby establishing fundamental phonon-mediated mechanisms for high-<em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span> realization. Combined with the obtained <span><math><mi>λ</mi></math></span>, we calculated the <em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span> of these compounds using the Allen–Dynes modified McMillan equation. The results indicate that <span><math><mrow><mi>P</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>̄</mo></mrow></mover><mi>m</mi><mn>1</mn></mrow></math></span>-Y<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>MgH<span><math><msub><mrow></mrow><mrow><mn>18</mn></mrow></msub></math></span> has the highest estimated <em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span> of 235 K at 140 GPa (with <span><math><mi>μ</mi></math></span> = 0.1), followed by <span><math><mrow><mi>R</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>̄</mo></mrow></mover><mi>m</mi></mrow></math></span>-YMg<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>24</mn></mrow></msub></math></span> (224 K at 140 GPa), <span><math><mrow><mi>P</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>̄</mo></mrow></mover><mi>m</mi><mn>1</mn></mrow></math></span>-YMg<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>18</mn></mrow></msub></math></span> (213 K at 140 GPa), and <span><math><mrow><mi>F</mi><mi>d</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>̄</mo></mrow></mover><mi>m</mi></mrow></math></span>-YMgH<span><math><msub><mrow></mrow><mrow><mn>12</mn></mrow></msub></math></span> at a higher pressure of 190 GPa (220 K). These findings demonstrate that by optimizing the structure of the Y–Mg–H system, it is possible to achieve higher <em>T</em><span><math><msub><mrow></mrow><mrow><mi>c</mi></mrow></msub></math></span> at relatively lower pressures (e.g., below 200 GPa), providing new directions and ideas for the research of high-temperature superconducting materials.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"258 \",\"pages\":\"Article 114024\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025625003672\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625003672","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了氢主导化合物中有希望成为高Tc超导体的候选材料。通过将群体智能结构搜索与DFT模拟相结合,我们系统地研究了高压状态(100-250 GPa)下Y-Mg-H三元体系的相稳定性和超导性能。对于Y-Mg-H体系的预测候选结构,为了研究稳定相的键合行为,我们在广泛的成分范围内检查了压力诱导相图和热力学凸包,并对所有预测相的电子结构进行了详细分析。为了评估超导性,我们对预测的稳定结构进行了系统的声子谱计算,以评估它们的Tc。我们的分析表明,氢衍生态主要控制EF电子结构,这是Tc升高的关键决定因素。电子-声子相互作用分析进一步表明,氢主导的晶格振动显著提高了耦合强度,从而建立了高tc实现的基本声子介导机制。结合得到的λ,我们用Allen-Dynes修正麦克米伦方程计算了这些化合物的Tc。结果表明,P3 - m1-Y2MgH18在140 GPa时的Tc值最高,为235 K (μ = 0.1),其次是R3 - m1- ymg3h24 (140 GPa时为224 K)、P3 - m1-YMg2H18 (140 GPa时为213 K)和Fd3 - m-YMgH12 (190 GPa时为220 K)。这些发现表明,通过优化Y-Mg-H体系的结构,可以在相对较低的压力下(例如低于200 GPa)实现更高的Tc,为高温超导材料的研究提供了新的方向和思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A systematic study on the phase diagram and superconductivity of ternary clathrate Y–Mg–H under high pressures

A systematic study on the phase diagram and superconductivity of ternary clathrate Y–Mg–H under high pressures
This study investigates promising candidates for high Tc superconductors within hydrogen-dominated compounds. Through integration of swarm-intelligence structural searches with DFT simulations, we systematically examined phase stability and superconducting properties in the Y–Mg–H ternary system across high-pressure regimes (100–250 GPa). For the predicted candidate structures of Y–Mg–H systems, to investigate the bonding behavior of stable phases, we examined the pressure-induced phase diagrams and thermodynamic convex hulls across a broad range of compositions, and also conducting a detailed analysis of the electronic structure of all predicted phases. To evaluate the superconductivity, we conducted systematic phonon spectrum calculations on the predicted stable structures to assess their Tc. Our analysis reveals that hydrogen-derived states predominantly govern the EF electronic structure, serving as a critical determinant for elevated Tc. Electron–phonon interaction analysis further demonstrates hydrogen-dominated lattice vibrations significantly boost the coupling strength, thereby establishing fundamental phonon-mediated mechanisms for high-Tc realization. Combined with the obtained λ, we calculated the Tc of these compounds using the Allen–Dynes modified McMillan equation. The results indicate that P3̄m1-Y2MgH18 has the highest estimated Tc of 235 K at 140 GPa (with μ = 0.1), followed by R3̄m-YMg3H24 (224 K at 140 GPa), P3̄m1-YMg2H18 (213 K at 140 GPa), and Fd3̄m-YMgH12 at a higher pressure of 190 GPa (220 K). These findings demonstrate that by optimizing the structure of the Y–Mg–H system, it is possible to achieve higher Tc at relatively lower pressures (e.g., below 200 GPa), providing new directions and ideas for the research of high-temperature superconducting materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信