基于运动语义扩展的运动文本检索方法

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Daoliang Xu , Tianyou Zheng , Yang Zhang , Xiaodong Yang , Weiwei Fu
{"title":"基于运动语义扩展的运动文本检索方法","authors":"Daoliang Xu ,&nbsp;Tianyou Zheng ,&nbsp;Yang Zhang ,&nbsp;Xiaodong Yang ,&nbsp;Weiwei Fu","doi":"10.1016/j.neucom.2025.130632","DOIUrl":null,"url":null,"abstract":"<div><div>The motion-text cross-retrieval task aims to bridge the motion and text spaces, enabling mutual retrieval between motion and language. However, existing methods suffer from limited feature extraction due to both insufficient data and inadequate feature extraction techniques, which restrict retrieval accuracy and semantic richness. To address this, we propose a Motion-Text Retrieval Method Based on Motion Semantics Expansion (MTR-MSE). We design specialized motion and text encoders to create a comprehensive shared feature space. Furthermore, recognizing the limitations of overly simplistic textual descriptions in existing datasets, we enhance motion semantics using large language models to generate more detailed and varied descriptions, thereby improving motion understanding. Experimental results demonstrate that our method achieves state-of-the-art performance, validating its effectiveness in addressing the challenges of cross-modal motion-text retrieval.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"648 ","pages":"Article 130632"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MTR-MSE: Motion-Text Retrieval Method Based on Motion Semantics Expansion\",\"authors\":\"Daoliang Xu ,&nbsp;Tianyou Zheng ,&nbsp;Yang Zhang ,&nbsp;Xiaodong Yang ,&nbsp;Weiwei Fu\",\"doi\":\"10.1016/j.neucom.2025.130632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The motion-text cross-retrieval task aims to bridge the motion and text spaces, enabling mutual retrieval between motion and language. However, existing methods suffer from limited feature extraction due to both insufficient data and inadequate feature extraction techniques, which restrict retrieval accuracy and semantic richness. To address this, we propose a Motion-Text Retrieval Method Based on Motion Semantics Expansion (MTR-MSE). We design specialized motion and text encoders to create a comprehensive shared feature space. Furthermore, recognizing the limitations of overly simplistic textual descriptions in existing datasets, we enhance motion semantics using large language models to generate more detailed and varied descriptions, thereby improving motion understanding. Experimental results demonstrate that our method achieves state-of-the-art performance, validating its effectiveness in addressing the challenges of cross-modal motion-text retrieval.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"648 \",\"pages\":\"Article 130632\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225013049\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225013049","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

运动-文本交叉检索任务旨在架起运动和文本空间的桥梁,实现运动和语言之间的相互检索。然而,现有的特征提取方法由于数据不足和特征提取技术不完善,使得检索精度和语义丰富度受到限制。为了解决这个问题,我们提出了一种基于运动语义扩展(MTR-MSE)的运动文本检索方法。我们设计了专门的运动和文本编码器,以创建一个全面的共享特征空间。此外,认识到现有数据集中过于简单的文本描述的局限性,我们使用大型语言模型增强运动语义,以生成更详细和多样化的描述,从而提高运动理解。实验结果表明,我们的方法达到了最先进的性能,验证了其在解决跨模态运动文本检索挑战方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MTR-MSE: Motion-Text Retrieval Method Based on Motion Semantics Expansion
The motion-text cross-retrieval task aims to bridge the motion and text spaces, enabling mutual retrieval between motion and language. However, existing methods suffer from limited feature extraction due to both insufficient data and inadequate feature extraction techniques, which restrict retrieval accuracy and semantic richness. To address this, we propose a Motion-Text Retrieval Method Based on Motion Semantics Expansion (MTR-MSE). We design specialized motion and text encoders to create a comprehensive shared feature space. Furthermore, recognizing the limitations of overly simplistic textual descriptions in existing datasets, we enhance motion semantics using large language models to generate more detailed and varied descriptions, thereby improving motion understanding. Experimental results demonstrate that our method achieves state-of-the-art performance, validating its effectiveness in addressing the challenges of cross-modal motion-text retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信