即时学习的脑启发投射对比学习网络

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Yanli Yang
{"title":"即时学习的脑启发投射对比学习网络","authors":"Yanli Yang","doi":"10.1016/j.engappai.2025.111524","DOIUrl":null,"url":null,"abstract":"<div><div>The biological brain can learn quickly and efficiently, while the learning of artificial neural networks is astonishing time-consuming and energy-consuming. Biosensory information is quickly projected to the memory areas to be identified or to be signed with a label through biological neural networks. Inspired by the fast learning of biological brains, a projection contrastive learning model is designed for the instantaneous learning of samples. This model is composed of an information projection module for rapid information representation and a contrastive learning module for neural manifold disentanglement. An algorithm instance of projection contrastive learning is designed to process some machinery vibration signals and is tested on several public datasets. The test on a mixed dataset containing 1426 training samples and 14,260 testing samples shows that the running time of our algorithm is approximately 37 s and that the average processing time is approximately 2.31 ms per sample, which is comparable to the processing speed of a human vision system. A prominent feature of this algorithm is that it can track the decision-making process to provide an explanation of outputs in addition to its fast running speed.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"158 ","pages":"Article 111524"},"PeriodicalIF":7.5000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A brain-inspired projection contrastive learning network for instantaneous learning\",\"authors\":\"Yanli Yang\",\"doi\":\"10.1016/j.engappai.2025.111524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The biological brain can learn quickly and efficiently, while the learning of artificial neural networks is astonishing time-consuming and energy-consuming. Biosensory information is quickly projected to the memory areas to be identified or to be signed with a label through biological neural networks. Inspired by the fast learning of biological brains, a projection contrastive learning model is designed for the instantaneous learning of samples. This model is composed of an information projection module for rapid information representation and a contrastive learning module for neural manifold disentanglement. An algorithm instance of projection contrastive learning is designed to process some machinery vibration signals and is tested on several public datasets. The test on a mixed dataset containing 1426 training samples and 14,260 testing samples shows that the running time of our algorithm is approximately 37 s and that the average processing time is approximately 2.31 ms per sample, which is comparable to the processing speed of a human vision system. A prominent feature of this algorithm is that it can track the decision-making process to provide an explanation of outputs in addition to its fast running speed.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"158 \",\"pages\":\"Article 111524\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095219762501526X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095219762501526X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

生物大脑可以快速有效地学习,而人工神经网络的学习则是惊人的耗时和耗能。生物感官信息通过生物神经网络快速投射到记忆区域进行识别或标记。受生物大脑快速学习的启发,设计了一种投影对比学习模型,用于样本的瞬时学习。该模型由用于快速信息表示的信息投影模块和用于神经流形解纠结的对比学习模块组成。设计了一种基于投影对比学习的机械振动信号处理算法实例,并在多个公开数据集上进行了测试。在包含1426个训练样本和14260个测试样本的混合数据集上的测试表明,我们的算法运行时间约为37 s,每个样本的平均处理时间约为2.31 ms,与人类视觉系统的处理速度相当。该算法的一个突出特点是除了运行速度快外,还可以跟踪决策过程并提供输出的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A brain-inspired projection contrastive learning network for instantaneous learning
The biological brain can learn quickly and efficiently, while the learning of artificial neural networks is astonishing time-consuming and energy-consuming. Biosensory information is quickly projected to the memory areas to be identified or to be signed with a label through biological neural networks. Inspired by the fast learning of biological brains, a projection contrastive learning model is designed for the instantaneous learning of samples. This model is composed of an information projection module for rapid information representation and a contrastive learning module for neural manifold disentanglement. An algorithm instance of projection contrastive learning is designed to process some machinery vibration signals and is tested on several public datasets. The test on a mixed dataset containing 1426 training samples and 14,260 testing samples shows that the running time of our algorithm is approximately 37 s and that the average processing time is approximately 2.31 ms per sample, which is comparable to the processing speed of a human vision system. A prominent feature of this algorithm is that it can track the decision-making process to provide an explanation of outputs in addition to its fast running speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信