探索Mo2C在锂氮电池中的催化作用

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Lixin Xiong,  and , Neil Qiang Su*, 
{"title":"探索Mo2C在锂氮电池中的催化作用","authors":"Lixin Xiong,&nbsp; and ,&nbsp;Neil Qiang Su*,&nbsp;","doi":"10.1021/acs.jpcc.5c0111010.1021/acs.jpcc.5c01110","DOIUrl":null,"url":null,"abstract":"<p >The rechargeable lithium–nitrogen (Li–N<sub>2</sub>) battery represents a promising strategy for nitrogen fixation and next-generation energy storage systems. However, the strong N≡N triple bond and high ionization energy pose significant challenges for an efficient nitrogen reduction reaction. This study employs density functional theory calculations to evaluate the performance of the Mo<sub>2</sub>C monolayer as a cathode catalyst for the Li–N<sub>2</sub> battery. Results reveal that N<sub>2</sub> interacts strongly with the Mo<sub>2</sub>C surface, significantly activating the N≡N bond and reducing the dissociation energy barrier to 0.379 eV. Crucially, Mo<sub>2</sub>C exhibits weak and strong adsorption of Li and N atoms, respectively, ensuring that active sites preferentially bond with N without Li poisoning. The calculated low charge/discharge overpotential (&lt;0.62 V) indicates that Mo<sub>2</sub>C effectively facilitates N<sub>2</sub> evolution and reduction reactions. According to the ab initio molecular dynamics simulation, N<sub>2</sub> dissociation and Li<sub>3</sub>N formation can be successfully observed on Mo<sub>2</sub>C but not on graphene (frequently utilized in Li–O<sub>2</sub> and Li–CO<sub>2</sub> batteries). This study identifies the primary role of cathode catalysts as promoting the discharge reaction and reversible cycling in the Li–N<sub>2</sub> battery, rather than merely reducing overpotential. These findings provide new insights into catalyst design and optimization strategies for enhancing the performance of Li–N<sub>2</sub> batteries.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 24","pages":"10886–10899 10886–10899"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Catalytic Role of Mo2C in Lithium–Nitrogen Batteries\",\"authors\":\"Lixin Xiong,&nbsp; and ,&nbsp;Neil Qiang Su*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.5c0111010.1021/acs.jpcc.5c01110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The rechargeable lithium–nitrogen (Li–N<sub>2</sub>) battery represents a promising strategy for nitrogen fixation and next-generation energy storage systems. However, the strong N≡N triple bond and high ionization energy pose significant challenges for an efficient nitrogen reduction reaction. This study employs density functional theory calculations to evaluate the performance of the Mo<sub>2</sub>C monolayer as a cathode catalyst for the Li–N<sub>2</sub> battery. Results reveal that N<sub>2</sub> interacts strongly with the Mo<sub>2</sub>C surface, significantly activating the N≡N bond and reducing the dissociation energy barrier to 0.379 eV. Crucially, Mo<sub>2</sub>C exhibits weak and strong adsorption of Li and N atoms, respectively, ensuring that active sites preferentially bond with N without Li poisoning. The calculated low charge/discharge overpotential (&lt;0.62 V) indicates that Mo<sub>2</sub>C effectively facilitates N<sub>2</sub> evolution and reduction reactions. According to the ab initio molecular dynamics simulation, N<sub>2</sub> dissociation and Li<sub>3</sub>N formation can be successfully observed on Mo<sub>2</sub>C but not on graphene (frequently utilized in Li–O<sub>2</sub> and Li–CO<sub>2</sub> batteries). This study identifies the primary role of cathode catalysts as promoting the discharge reaction and reversible cycling in the Li–N<sub>2</sub> battery, rather than merely reducing overpotential. These findings provide new insights into catalyst design and optimization strategies for enhancing the performance of Li–N<sub>2</sub> batteries.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"129 24\",\"pages\":\"10886–10899 10886–10899\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c01110\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c01110","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

可充电锂氮(Li-N2)电池代表了一种很有前途的固氮策略和下一代储能系统。然而,强N≡N三键和高电离能对高效的氮还原反应提出了重大挑战。本研究采用密度泛函理论计算来评价Mo2C单层作为Li-N2电池阴极催化剂的性能。结果表明,N2与Mo2C表面有强烈的相互作用,显著激活N≡N键,并将解离能垒降低到0.379 eV。关键是,Mo2C对Li和N原子分别表现出弱和强吸附,确保活性位点优先与N结合,而不会发生Li中毒。计算得到的低充放电过电位(<0.62 V)表明Mo2C有效地促进了N2的演化和还原反应。根据从头算分子动力学模拟,在Mo2C上可以成功地观察到N2解离和Li3N的形成,而在石墨烯(Li-O2和Li-CO2电池中经常使用)上则不能。本研究确定了阴极催化剂的主要作用是促进Li-N2电池的放电反应和可逆循环,而不仅仅是降低过电位。这些发现为提高Li-N2电池性能的催化剂设计和优化策略提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploring the Catalytic Role of Mo2C in Lithium–Nitrogen Batteries

Exploring the Catalytic Role of Mo2C in Lithium–Nitrogen Batteries

The rechargeable lithium–nitrogen (Li–N2) battery represents a promising strategy for nitrogen fixation and next-generation energy storage systems. However, the strong N≡N triple bond and high ionization energy pose significant challenges for an efficient nitrogen reduction reaction. This study employs density functional theory calculations to evaluate the performance of the Mo2C monolayer as a cathode catalyst for the Li–N2 battery. Results reveal that N2 interacts strongly with the Mo2C surface, significantly activating the N≡N bond and reducing the dissociation energy barrier to 0.379 eV. Crucially, Mo2C exhibits weak and strong adsorption of Li and N atoms, respectively, ensuring that active sites preferentially bond with N without Li poisoning. The calculated low charge/discharge overpotential (<0.62 V) indicates that Mo2C effectively facilitates N2 evolution and reduction reactions. According to the ab initio molecular dynamics simulation, N2 dissociation and Li3N formation can be successfully observed on Mo2C but not on graphene (frequently utilized in Li–O2 and Li–CO2 batteries). This study identifies the primary role of cathode catalysts as promoting the discharge reaction and reversible cycling in the Li–N2 battery, rather than merely reducing overpotential. These findings provide new insights into catalyst design and optimization strategies for enhancing the performance of Li–N2 batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信