范德华异质结构带对准的机器学习洞察

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Ruo-Fan Shen, Ya-Chao Liu*, Wan-Li Jia, Jia Shi, Yoshiyuki Kawazoe and Vei Wang*, 
{"title":"范德华异质结构带对准的机器学习洞察","authors":"Ruo-Fan Shen,&nbsp;Ya-Chao Liu*,&nbsp;Wan-Li Jia,&nbsp;Jia Shi,&nbsp;Yoshiyuki Kawazoe and Vei Wang*,&nbsp;","doi":"10.1021/acs.jpcc.4c0833310.1021/acs.jpcc.4c08333","DOIUrl":null,"url":null,"abstract":"<p >The integration of two-dimensional (2D) materials into van der Waals heterostructures (vdWHs) enables the stacking of atomically thin layers through weak vdW interactions, offering tunable properties for next-generation optoelectronic and catalytic applications. In this study, we systematically predicted the band alignment types of over 32,000 vdWHs, constructed by pairing any two of the 256 semiconductor monolayers from the 2D Semiconductor Computational Database (2DSdb) [<i>J. Phys. Chem. Lett.</i> <b>2022</b> <i>13</i>, 11581], based on Anderson’s rule. Nearly 100 features were extracted from the physical properties of these vdWHs to establish a descriptor database for the triclassification of vdWHs using machine learning models, including extreme gradient boosting, random forest, and gradient boosting classifier, achieving accuracy rates between 85 and 87%. SHapley Additive exPlanations (SHAP) analysis identified electronegativity, oxygen fraction, valence electrons in the <i>p</i>-orbital, and lattice constants as the most influential features. The resulting database is expected to provide valuable guidance for experimentalists in designing nanodevices and photocatalysts.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 24","pages":"10941–10949 10941–10949"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Insights into Band Alignments of van der Waals Heterostructures\",\"authors\":\"Ruo-Fan Shen,&nbsp;Ya-Chao Liu*,&nbsp;Wan-Li Jia,&nbsp;Jia Shi,&nbsp;Yoshiyuki Kawazoe and Vei Wang*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.4c0833310.1021/acs.jpcc.4c08333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The integration of two-dimensional (2D) materials into van der Waals heterostructures (vdWHs) enables the stacking of atomically thin layers through weak vdW interactions, offering tunable properties for next-generation optoelectronic and catalytic applications. In this study, we systematically predicted the band alignment types of over 32,000 vdWHs, constructed by pairing any two of the 256 semiconductor monolayers from the 2D Semiconductor Computational Database (2DSdb) [<i>J. Phys. Chem. Lett.</i> <b>2022</b> <i>13</i>, 11581], based on Anderson’s rule. Nearly 100 features were extracted from the physical properties of these vdWHs to establish a descriptor database for the triclassification of vdWHs using machine learning models, including extreme gradient boosting, random forest, and gradient boosting classifier, achieving accuracy rates between 85 and 87%. SHapley Additive exPlanations (SHAP) analysis identified electronegativity, oxygen fraction, valence electrons in the <i>p</i>-orbital, and lattice constants as the most influential features. The resulting database is expected to provide valuable guidance for experimentalists in designing nanodevices and photocatalysts.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"129 24\",\"pages\":\"10941–10949 10941–10949\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c08333\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c08333","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

将二维(2D)材料集成到范德华异质结构(vdWHs)中,可以通过弱vdW相互作用实现原子薄层的堆叠,为下一代光电和催化应用提供可调特性。在这项研究中,我们系统地预测了超过32,000个vdWHs的波段对准类型,这些vdWHs是通过配对来自2D半导体计算数据库(2DSdb)的256个半导体单层中的任何两个来构建的。理论物理。化学。Lett. 2022[13], 11581],基于Anderson法则。从这些vdWHs的物理性质中提取近100个特征,建立描述符数据库,使用极端梯度增强、随机森林和梯度增强分类器等机器学习模型对vdWHs进行三分类,准确率在85 ~ 87%之间。SHapley加性解释(SHAP)分析发现电负性、氧分数、p轨道价电子和晶格常数是影响最大的特征。该数据库有望为实验人员设计纳米器件和光催化剂提供有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine Learning Insights into Band Alignments of van der Waals Heterostructures

Machine Learning Insights into Band Alignments of van der Waals Heterostructures

The integration of two-dimensional (2D) materials into van der Waals heterostructures (vdWHs) enables the stacking of atomically thin layers through weak vdW interactions, offering tunable properties for next-generation optoelectronic and catalytic applications. In this study, we systematically predicted the band alignment types of over 32,000 vdWHs, constructed by pairing any two of the 256 semiconductor monolayers from the 2D Semiconductor Computational Database (2DSdb) [J. Phys. Chem. Lett. 2022 13, 11581], based on Anderson’s rule. Nearly 100 features were extracted from the physical properties of these vdWHs to establish a descriptor database for the triclassification of vdWHs using machine learning models, including extreme gradient boosting, random forest, and gradient boosting classifier, achieving accuracy rates between 85 and 87%. SHapley Additive exPlanations (SHAP) analysis identified electronegativity, oxygen fraction, valence electrons in the p-orbital, and lattice constants as the most influential features. The resulting database is expected to provide valuable guidance for experimentalists in designing nanodevices and photocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信