非中心对称超导体LaPtSi在宽压力范围内的超导特性

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Wanli Pan, Kanta Okamoto, Masaki Utsumi, Yi Chen, Misuzu Kitahara, Hidenori Goto, Hirofumi Ishii, Yasuhiro Takabayashi, Koichi Hayashi, Shingo Araki and Yoshihiro Kubozono*, 
{"title":"非中心对称超导体LaPtSi在宽压力范围内的超导特性","authors":"Wanli Pan,&nbsp;Kanta Okamoto,&nbsp;Masaki Utsumi,&nbsp;Yi Chen,&nbsp;Misuzu Kitahara,&nbsp;Hidenori Goto,&nbsp;Hirofumi Ishii,&nbsp;Yasuhiro Takabayashi,&nbsp;Koichi Hayashi,&nbsp;Shingo Araki and Yoshihiro Kubozono*,&nbsp;","doi":"10.1021/acs.jpcc.5c01806","DOIUrl":null,"url":null,"abstract":"<p >The structural and superconducting properties of the noncentrosymmetric superconductor LaPtSi, prepared using an arc-melting method, were investigated across a broad pressure range. Noncentrosymmetric crystals, which break spatial inversion symmetry, are known to exhibit fascinating physical phenomena, specifically the magnetoelectric effect and the Edelstein effect (electrical-current-induced magnetization). The pairing mechanism for superconductors lacking spatial inversion symmetry cannot be featured by a specified spin state (or a parity of orbital) owing to an indistinguishable spin state, where singlet and triplet states are mixed. This leads to unconventional superconductivity, which cannot be explained by the conventional BCS theory, where a spin-singlet <i>s</i>-wave electron pairing (<i>s</i>-wave pairing) is postulated. We examined the crystal structure of the noncentrosymmetric superconductor LaPtSi, known to lack spatial inversion symmetry at ambient pressure, over a wide pressure range. Our findings confirmed that LaPtSi is a superconductor with a superconducting transition temperature (<i>T</i><sub>c</sub>) of 3.95 K at ambient pressure and exhibits a tetragonal structure (space group <i>I</i>4<sub>1</sub><i>md</i> (No. 109)) across a wide pressure range of 0–23.2 GPa. The space group does not possess spatial inversion symmetry. LaPtSi is an analogue of the noncentrosymmetric superconductor LaPtGe, which has a <i>T</i><sub>c</sub> of approximately 3.0 K. Thus, LaPtSi represents a potential unconventional superconductor at least up to ∼23 GPa. The pressure dependence of the superconducting properties was investigated at 0–17.5 GPa, based on the temperature (<i>T</i>) dependence of electrical resistance <i>R</i>, revealing a robust <i>T</i><sub>c</sub> against pressure that remains independent of pressure. The <i>R</i>–<i>T</i> plots under different applied magnetic fields (applied magnetic field (<i>H</i>) of 0–2 T) were measured at 5.21 GPa, yielding various characteristic parameters such as the orbital limiting field, <i></i><math><msubsup><mrow><mi>H</mi></mrow><mrow><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></mrow><mrow><mi>orbital</mi></mrow></msubsup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></math>, the Ginzburg–Landau upper critical field, <i>H</i><sub>c2</sub>(0), and the Pauli limiting field, <i></i><math><msubsup><mrow><mi>H</mi></mrow><mrow><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></mrow><mrow><mi>P</mi></mrow></msubsup></math>. The value of <i></i><math><msubsup><mrow><mi>H</mi></mrow><mrow><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></mrow><mrow><mi>orbital</mi></mrow></msubsup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></math> (= 1.44(5) T) was found to be smaller than <i>H</i><sub>c2</sub>(0) (= 1.75(3) T), while <i>H</i><sub>c2</sub>(0) was significantly smaller than <i></i><math><msubsup><mrow><mi>H</mi></mrow><mrow><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></mrow><mrow><mi>P</mi></mrow></msubsup></math> (= 6.34 T). These results suggest simple <i>s</i>-wave electron pairing in LaPtSi under pressure, despite the absence of spatial inversion symmetry. Notably, we have observed that <i>H</i><sub>c2</sub>(0) exceeds the orbital limiting field at high pressure, indicating that LaPtSi does not follow the conventional Werthamer–Helfand–Hohenberg theory. In this study, we thoroughly discussed the electron pairing mechanism and the origin of <i>H</i><sub>c2</sub>(0) &gt; <i></i><math><msubsup><mrow><mi>H</mi></mrow><mrow><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></mrow><mrow><mi>orbital</mi></mrow></msubsup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></math> obtained in LaPtSi, along with the robust <i>T</i><sub>c</sub> against pressure.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 26","pages":"12159–12166"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superconducting Properties of the Noncentrosymmetric Superconductor LaPtSi Across a Broad Pressure Range\",\"authors\":\"Wanli Pan,&nbsp;Kanta Okamoto,&nbsp;Masaki Utsumi,&nbsp;Yi Chen,&nbsp;Misuzu Kitahara,&nbsp;Hidenori Goto,&nbsp;Hirofumi Ishii,&nbsp;Yasuhiro Takabayashi,&nbsp;Koichi Hayashi,&nbsp;Shingo Araki and Yoshihiro Kubozono*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.5c01806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The structural and superconducting properties of the noncentrosymmetric superconductor LaPtSi, prepared using an arc-melting method, were investigated across a broad pressure range. Noncentrosymmetric crystals, which break spatial inversion symmetry, are known to exhibit fascinating physical phenomena, specifically the magnetoelectric effect and the Edelstein effect (electrical-current-induced magnetization). The pairing mechanism for superconductors lacking spatial inversion symmetry cannot be featured by a specified spin state (or a parity of orbital) owing to an indistinguishable spin state, where singlet and triplet states are mixed. This leads to unconventional superconductivity, which cannot be explained by the conventional BCS theory, where a spin-singlet <i>s</i>-wave electron pairing (<i>s</i>-wave pairing) is postulated. We examined the crystal structure of the noncentrosymmetric superconductor LaPtSi, known to lack spatial inversion symmetry at ambient pressure, over a wide pressure range. Our findings confirmed that LaPtSi is a superconductor with a superconducting transition temperature (<i>T</i><sub>c</sub>) of 3.95 K at ambient pressure and exhibits a tetragonal structure (space group <i>I</i>4<sub>1</sub><i>md</i> (No. 109)) across a wide pressure range of 0–23.2 GPa. The space group does not possess spatial inversion symmetry. LaPtSi is an analogue of the noncentrosymmetric superconductor LaPtGe, which has a <i>T</i><sub>c</sub> of approximately 3.0 K. Thus, LaPtSi represents a potential unconventional superconductor at least up to ∼23 GPa. The pressure dependence of the superconducting properties was investigated at 0–17.5 GPa, based on the temperature (<i>T</i>) dependence of electrical resistance <i>R</i>, revealing a robust <i>T</i><sub>c</sub> against pressure that remains independent of pressure. The <i>R</i>–<i>T</i> plots under different applied magnetic fields (applied magnetic field (<i>H</i>) of 0–2 T) were measured at 5.21 GPa, yielding various characteristic parameters such as the orbital limiting field, <i></i><math><msubsup><mrow><mi>H</mi></mrow><mrow><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></mrow><mrow><mi>orbital</mi></mrow></msubsup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></math>, the Ginzburg–Landau upper critical field, <i>H</i><sub>c2</sub>(0), and the Pauli limiting field, <i></i><math><msubsup><mrow><mi>H</mi></mrow><mrow><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></mrow><mrow><mi>P</mi></mrow></msubsup></math>. The value of <i></i><math><msubsup><mrow><mi>H</mi></mrow><mrow><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></mrow><mrow><mi>orbital</mi></mrow></msubsup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></math> (= 1.44(5) T) was found to be smaller than <i>H</i><sub>c2</sub>(0) (= 1.75(3) T), while <i>H</i><sub>c2</sub>(0) was significantly smaller than <i></i><math><msubsup><mrow><mi>H</mi></mrow><mrow><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></mrow><mrow><mi>P</mi></mrow></msubsup></math> (= 6.34 T). These results suggest simple <i>s</i>-wave electron pairing in LaPtSi under pressure, despite the absence of spatial inversion symmetry. Notably, we have observed that <i>H</i><sub>c2</sub>(0) exceeds the orbital limiting field at high pressure, indicating that LaPtSi does not follow the conventional Werthamer–Helfand–Hohenberg theory. In this study, we thoroughly discussed the electron pairing mechanism and the origin of <i>H</i><sub>c2</sub>(0) &gt; <i></i><math><msubsup><mrow><mi>H</mi></mrow><mrow><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></mrow><mrow><mi>orbital</mi></mrow></msubsup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></math> obtained in LaPtSi, along with the robust <i>T</i><sub>c</sub> against pressure.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"129 26\",\"pages\":\"12159–12166\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c01806\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c01806","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了电弧熔炼法制备的非中心对称超导体LaPtSi在宽压力范围内的结构和超导性能。打破空间反演对称的非中心对称晶体,被认为表现出迷人的物理现象,特别是磁电效应和爱德斯坦效应(电流诱导磁化)。由于单线态和三重态混合的难以区分的自旋态,缺乏空间反演对称性的超导体的配对机制不能以特定的自旋态(或轨道宇称)为特征。这导致了非常规的超导性,这是传统的BCS理论无法解释的,其中自旋单线态s波电子对(s波对)是假设的。我们研究了非中心对称超导体LaPtSi的晶体结构,已知在环境压力下缺乏空间反演对称性,在很宽的压力范围内。我们的研究结果证实了LaPtSi是一种超导体,在环境压力下超导转变温度(Tc)为3.95 K,在0-23.2 GPa的宽压力范围内呈现四方结构(空间群I41md (No. 109))。空间群不具有空间反演对称性。LaPtSi是一种非中心对称超导体LaPtGe的类似物,其Tc约为3.0 K。因此,LaPtSi代表了一种潜在的非常规超导体,至少高达~ 23 GPa。基于电阻R对温度(T)的依赖关系,研究了0-17.5 GPa时超导特性的压力依赖关系,揭示了一个与压力无关的强大的Tc。在5.21 GPa下测量了不同外加磁场(外加磁场(H)为0 ~ 2 T)下的R-T图,得到了轨道极限场Hc2轨道(0)、金兹堡-朗道上临界场Hc2(0)和泡利极限场Hc2P等特征参数。Hc2轨道(0)值(= 1.44(5)T)小于Hc2轨道(0)值(= 1.75(3)T),而Hc2轨道(0)值明显小于Hc2P轨道(= 6.34 T)。这些结果表明,尽管没有空间反演对称性,但在压力下LaPtSi中存在简单的s波电子配对。值得注意的是,我们已经观察到Hc2(0)在高压下超过轨道极限场,这表明LaPtSi不遵循传统的werthmer - helfand - hohenberg理论。在本研究中,我们深入地讨论了Hc2(0) >的电子配对机制和起源;在LaPtSi中得到hc2轨道(0),以及抗压力的强大Tc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Superconducting Properties of the Noncentrosymmetric Superconductor LaPtSi Across a Broad Pressure Range

Superconducting Properties of the Noncentrosymmetric Superconductor LaPtSi Across a Broad Pressure Range

Superconducting Properties of the Noncentrosymmetric Superconductor LaPtSi Across a Broad Pressure Range

The structural and superconducting properties of the noncentrosymmetric superconductor LaPtSi, prepared using an arc-melting method, were investigated across a broad pressure range. Noncentrosymmetric crystals, which break spatial inversion symmetry, are known to exhibit fascinating physical phenomena, specifically the magnetoelectric effect and the Edelstein effect (electrical-current-induced magnetization). The pairing mechanism for superconductors lacking spatial inversion symmetry cannot be featured by a specified spin state (or a parity of orbital) owing to an indistinguishable spin state, where singlet and triplet states are mixed. This leads to unconventional superconductivity, which cannot be explained by the conventional BCS theory, where a spin-singlet s-wave electron pairing (s-wave pairing) is postulated. We examined the crystal structure of the noncentrosymmetric superconductor LaPtSi, known to lack spatial inversion symmetry at ambient pressure, over a wide pressure range. Our findings confirmed that LaPtSi is a superconductor with a superconducting transition temperature (Tc) of 3.95 K at ambient pressure and exhibits a tetragonal structure (space group I41md (No. 109)) across a wide pressure range of 0–23.2 GPa. The space group does not possess spatial inversion symmetry. LaPtSi is an analogue of the noncentrosymmetric superconductor LaPtGe, which has a Tc of approximately 3.0 K. Thus, LaPtSi represents a potential unconventional superconductor at least up to ∼23 GPa. The pressure dependence of the superconducting properties was investigated at 0–17.5 GPa, based on the temperature (T) dependence of electrical resistance R, revealing a robust Tc against pressure that remains independent of pressure. The RT plots under different applied magnetic fields (applied magnetic field (H) of 0–2 T) were measured at 5.21 GPa, yielding various characteristic parameters such as the orbital limiting field, Hc2orbital(0), the Ginzburg–Landau upper critical field, Hc2(0), and the Pauli limiting field, Hc2P. The value of Hc2orbital(0) (= 1.44(5) T) was found to be smaller than Hc2(0) (= 1.75(3) T), while Hc2(0) was significantly smaller than Hc2P (= 6.34 T). These results suggest simple s-wave electron pairing in LaPtSi under pressure, despite the absence of spatial inversion symmetry. Notably, we have observed that Hc2(0) exceeds the orbital limiting field at high pressure, indicating that LaPtSi does not follow the conventional Werthamer–Helfand–Hohenberg theory. In this study, we thoroughly discussed the electron pairing mechanism and the origin of Hc2(0) > Hc2orbital(0) obtained in LaPtSi, along with the robust Tc against pressure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信