M.S. Wang, F. Beutler, J. Aguilar, S. Ahlen, D. Bianchi, D. Brooks, T. Claybaugh, A. de la Macorra, P. Doel, A. Font-Ribera, E. Gaztañaga, G. Gutierrez, K. Honscheid, C. Howlett, D. Kirkby, A. Lambert, M. Landriau, R. Miquel, G. Niz, F. Prada, I. Pérez-Ràfols, G. Rossi, E. Sanchez, D. Schlegel, M. Schubnell, D. Sprayberry, G. Tarlé and B.A. Weaver
{"title":"星系团双谱的窗口卷积","authors":"M.S. Wang, F. Beutler, J. Aguilar, S. Ahlen, D. Bianchi, D. Brooks, T. Claybaugh, A. de la Macorra, P. Doel, A. Font-Ribera, E. Gaztañaga, G. Gutierrez, K. Honscheid, C. Howlett, D. Kirkby, A. Lambert, M. Landriau, R. Miquel, G. Niz, F. Prada, I. Pérez-Ràfols, G. Rossi, E. Sanchez, D. Schlegel, M. Schubnell, D. Sprayberry, G. Tarlé and B.A. Weaver","doi":"10.1088/1475-7516/2025/06/031","DOIUrl":null,"url":null,"abstract":"In galaxy survey analysis, the observed clustering statistics do not directly match theoretical predictions but rather have been processed by a window function that arises from the survey geometry including the sky footprint, redshift-dependent background number density and systematic weights. While window convolution of the power spectrum is well studied, for the bispectrum with a larger number of degrees of freedom, it poses a significant numerical and computational challenge. In this work, we consider the effect of the survey window in the tripolar spherical harmonic decomposition of the bispectrum and lay down a formal procedure for their convolution via a series expansion of configuration-space three-point correlation functions, which was first proposed by Sugiyama et al. (2019). We then provide a linear algebra formulation of the full window convolution, where an unwindowed bispectrum model vector can be directly premultiplied by a window matrix specific to each survey geometry. To validate the pipeline, we focus on the Dark Energy Spectroscopic Instrument (DESI) Data Release 1 (DR1) luminous red galaxy (LRG) sample in the South Galactic Cap (SGC) in the redshift bin 0.4 ≤ z ≤ 0.6. We first perform convergence checks on the measurement of the window function from discrete random catalogues, and then investigate the convergence of the window convolution series expansion truncated at a finite of number of terms as well as the performance of the window matrix. This work highlights the differences in window convolution between the power spectrum and bispectrum, and provides a streamlined pipeline for the latter for current surveys such as DESI and the Euclid mission.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"6 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Window convolution of the galaxy clustering bispectrum\",\"authors\":\"M.S. Wang, F. Beutler, J. Aguilar, S. Ahlen, D. Bianchi, D. Brooks, T. Claybaugh, A. de la Macorra, P. Doel, A. Font-Ribera, E. Gaztañaga, G. Gutierrez, K. Honscheid, C. Howlett, D. Kirkby, A. Lambert, M. Landriau, R. Miquel, G. Niz, F. Prada, I. Pérez-Ràfols, G. Rossi, E. Sanchez, D. Schlegel, M. Schubnell, D. Sprayberry, G. Tarlé and B.A. Weaver\",\"doi\":\"10.1088/1475-7516/2025/06/031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In galaxy survey analysis, the observed clustering statistics do not directly match theoretical predictions but rather have been processed by a window function that arises from the survey geometry including the sky footprint, redshift-dependent background number density and systematic weights. While window convolution of the power spectrum is well studied, for the bispectrum with a larger number of degrees of freedom, it poses a significant numerical and computational challenge. In this work, we consider the effect of the survey window in the tripolar spherical harmonic decomposition of the bispectrum and lay down a formal procedure for their convolution via a series expansion of configuration-space three-point correlation functions, which was first proposed by Sugiyama et al. (2019). We then provide a linear algebra formulation of the full window convolution, where an unwindowed bispectrum model vector can be directly premultiplied by a window matrix specific to each survey geometry. To validate the pipeline, we focus on the Dark Energy Spectroscopic Instrument (DESI) Data Release 1 (DR1) luminous red galaxy (LRG) sample in the South Galactic Cap (SGC) in the redshift bin 0.4 ≤ z ≤ 0.6. We first perform convergence checks on the measurement of the window function from discrete random catalogues, and then investigate the convergence of the window convolution series expansion truncated at a finite of number of terms as well as the performance of the window matrix. This work highlights the differences in window convolution between the power spectrum and bispectrum, and provides a streamlined pipeline for the latter for current surveys such as DESI and the Euclid mission.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/06/031\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/06/031","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Window convolution of the galaxy clustering bispectrum
In galaxy survey analysis, the observed clustering statistics do not directly match theoretical predictions but rather have been processed by a window function that arises from the survey geometry including the sky footprint, redshift-dependent background number density and systematic weights. While window convolution of the power spectrum is well studied, for the bispectrum with a larger number of degrees of freedom, it poses a significant numerical and computational challenge. In this work, we consider the effect of the survey window in the tripolar spherical harmonic decomposition of the bispectrum and lay down a formal procedure for their convolution via a series expansion of configuration-space three-point correlation functions, which was first proposed by Sugiyama et al. (2019). We then provide a linear algebra formulation of the full window convolution, where an unwindowed bispectrum model vector can be directly premultiplied by a window matrix specific to each survey geometry. To validate the pipeline, we focus on the Dark Energy Spectroscopic Instrument (DESI) Data Release 1 (DR1) luminous red galaxy (LRG) sample in the South Galactic Cap (SGC) in the redshift bin 0.4 ≤ z ≤ 0.6. We first perform convergence checks on the measurement of the window function from discrete random catalogues, and then investigate the convergence of the window convolution series expansion truncated at a finite of number of terms as well as the performance of the window matrix. This work highlights the differences in window convolution between the power spectrum and bispectrum, and provides a streamlined pipeline for the latter for current surveys such as DESI and the Euclid mission.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.