利用Eye2Gene多模态成像研究遗传性视网膜疾病的下一代表型

IF 18.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Nikolas Pontikos, William A. Woof, Siying Lin, Biraja Ghoshal, Bernardo S. Mendes, Advaith Veturi, Quang Nguyen, Behnam Javanmardi, Michalis Georgiou, Alexander Hustinx, Miguel A. Ibarra-Arellano, Ismail Moghul, Yichen Liu, Kristina Pfau, Maximilian Pfau, Mital Shah, Jing Yu, Saoud Al-Khuzaei, Siegfried K. Wagner, Malena Daich Varela, Thales Antonio Cabral de Guimarães, Sagnik Sen, Gunjan Naik, Dayyanah Sumodhee, Dun Jack Fu, Nathaniel Kabiri, Jennifer Furman, Bart Liefers, Aaron Y. Lee, Samantha R. De Silva, Caio Marques, Fabiana Motta, Yu Fujinami-Yokokawa, Alison J. Hardcastle, Gavin Arno, Birgit Lorenz, Philipp Herrmann, Kaoru Fujinami, Juliana Sallum, Savita Madhusudhan, Susan M. Downes, Frank G. Holz, Konstantinos Balaskas, Andrew R. Webster, Omar A. Mahroo, Peter M. Krawitz, Michel Michaelides
{"title":"利用Eye2Gene多模态成像研究遗传性视网膜疾病的下一代表型","authors":"Nikolas Pontikos, William A. Woof, Siying Lin, Biraja Ghoshal, Bernardo S. Mendes, Advaith Veturi, Quang Nguyen, Behnam Javanmardi, Michalis Georgiou, Alexander Hustinx, Miguel A. Ibarra-Arellano, Ismail Moghul, Yichen Liu, Kristina Pfau, Maximilian Pfau, Mital Shah, Jing Yu, Saoud Al-Khuzaei, Siegfried K. Wagner, Malena Daich Varela, Thales Antonio Cabral de Guimarães, Sagnik Sen, Gunjan Naik, Dayyanah Sumodhee, Dun Jack Fu, Nathaniel Kabiri, Jennifer Furman, Bart Liefers, Aaron Y. Lee, Samantha R. De Silva, Caio Marques, Fabiana Motta, Yu Fujinami-Yokokawa, Alison J. Hardcastle, Gavin Arno, Birgit Lorenz, Philipp Herrmann, Kaoru Fujinami, Juliana Sallum, Savita Madhusudhan, Susan M. Downes, Frank G. Holz, Konstantinos Balaskas, Andrew R. Webster, Omar A. Mahroo, Peter M. Krawitz, Michel Michaelides","doi":"10.1038/s42256-025-01040-8","DOIUrl":null,"url":null,"abstract":"<p>Rare eye diseases such as inherited retinal diseases (IRDs) are challenging to diagnose genetically. IRDs are typically monogenic disorders and represent a leading cause of blindness in children and working-age adults worldwide. A growing number are now being targeted in clinical trials, with approved treatments increasingly available. However, access requires a genetic diagnosis to be established sufficiently early. Critically, the timely identification of a genetic cause remains challenging. We demonstrate that a deep learning algorithm, Eye2Gene, trained on a large multimodal imaging dataset of individuals with IRDs (<i>n</i> = 2,451) and externally validated on data provided by five different clinical centres, provides better-than-expert-level top-five accuracy of 83.9% for supporting genetic diagnosis for the 63 most common genetic causes. We demonstrate that Eye2Gene’s next-generation phenotyping can increase diagnostic yield by improving screening for IRDs, phenotype-driven variant prioritization and automatic similarity matching in phenotypic space to identify new genes. Eye2Gene is accessible online (app.eye2gene.com) for research purposes.</p>","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 1","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Next-generation phenotyping of inherited retinal diseases from multimodal imaging with Eye2Gene\",\"authors\":\"Nikolas Pontikos, William A. Woof, Siying Lin, Biraja Ghoshal, Bernardo S. Mendes, Advaith Veturi, Quang Nguyen, Behnam Javanmardi, Michalis Georgiou, Alexander Hustinx, Miguel A. Ibarra-Arellano, Ismail Moghul, Yichen Liu, Kristina Pfau, Maximilian Pfau, Mital Shah, Jing Yu, Saoud Al-Khuzaei, Siegfried K. Wagner, Malena Daich Varela, Thales Antonio Cabral de Guimarães, Sagnik Sen, Gunjan Naik, Dayyanah Sumodhee, Dun Jack Fu, Nathaniel Kabiri, Jennifer Furman, Bart Liefers, Aaron Y. Lee, Samantha R. De Silva, Caio Marques, Fabiana Motta, Yu Fujinami-Yokokawa, Alison J. Hardcastle, Gavin Arno, Birgit Lorenz, Philipp Herrmann, Kaoru Fujinami, Juliana Sallum, Savita Madhusudhan, Susan M. Downes, Frank G. Holz, Konstantinos Balaskas, Andrew R. Webster, Omar A. Mahroo, Peter M. Krawitz, Michel Michaelides\",\"doi\":\"10.1038/s42256-025-01040-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rare eye diseases such as inherited retinal diseases (IRDs) are challenging to diagnose genetically. IRDs are typically monogenic disorders and represent a leading cause of blindness in children and working-age adults worldwide. A growing number are now being targeted in clinical trials, with approved treatments increasingly available. However, access requires a genetic diagnosis to be established sufficiently early. Critically, the timely identification of a genetic cause remains challenging. We demonstrate that a deep learning algorithm, Eye2Gene, trained on a large multimodal imaging dataset of individuals with IRDs (<i>n</i> = 2,451) and externally validated on data provided by five different clinical centres, provides better-than-expert-level top-five accuracy of 83.9% for supporting genetic diagnosis for the 63 most common genetic causes. We demonstrate that Eye2Gene’s next-generation phenotyping can increase diagnostic yield by improving screening for IRDs, phenotype-driven variant prioritization and automatic similarity matching in phenotypic space to identify new genes. Eye2Gene is accessible online (app.eye2gene.com) for research purposes.</p>\",\"PeriodicalId\":48533,\"journal\":{\"name\":\"Nature Machine Intelligence\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":18.8000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1038/s42256-025-01040-8\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1038/s42256-025-01040-8","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

遗传性视网膜疾病(IRDs)等罕见眼病的遗传诊断具有挑战性。IRDs是典型的单基因疾病,是全世界儿童和工作年龄成人失明的主要原因。越来越多的人现在成为临床试验的目标,批准的治疗方法也越来越多。然而,获取需要足够早地建立遗传诊断。关键的是,及时确定遗传原因仍然具有挑战性。我们证明了一种深度学习算法Eye2Gene,在ird个体(n = 2,451)的大型多模态成像数据集上进行了训练,并在五个不同临床中心提供的数据上进行了外部验证,为63种最常见的遗传原因的遗传诊断提供了优于专家水平的前五名准确率83.9%。我们证明Eye2Gene的下一代表型可以通过改进ird筛选、表型驱动的变异优先排序和表型空间中的自动相似性匹配来识别新基因,从而提高诊断率。Eye2Gene可以在线访问(app.eye2gene.com)用于研究目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Next-generation phenotyping of inherited retinal diseases from multimodal imaging with Eye2Gene

Next-generation phenotyping of inherited retinal diseases from multimodal imaging with Eye2Gene

Rare eye diseases such as inherited retinal diseases (IRDs) are challenging to diagnose genetically. IRDs are typically monogenic disorders and represent a leading cause of blindness in children and working-age adults worldwide. A growing number are now being targeted in clinical trials, with approved treatments increasingly available. However, access requires a genetic diagnosis to be established sufficiently early. Critically, the timely identification of a genetic cause remains challenging. We demonstrate that a deep learning algorithm, Eye2Gene, trained on a large multimodal imaging dataset of individuals with IRDs (n = 2,451) and externally validated on data provided by five different clinical centres, provides better-than-expert-level top-five accuracy of 83.9% for supporting genetic diagnosis for the 63 most common genetic causes. We demonstrate that Eye2Gene’s next-generation phenotyping can increase diagnostic yield by improving screening for IRDs, phenotype-driven variant prioritization and automatic similarity matching in phenotypic space to identify new genes. Eye2Gene is accessible online (app.eye2gene.com) for research purposes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
36.90
自引率
2.10%
发文量
127
期刊介绍: Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements. To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects. Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信