利用基础视觉变压器的微观结构表示的材料微结构-性能关系的机器学习

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sheila E. Whitman, Marat I. Latypov
{"title":"利用基础视觉变压器的微观结构表示的材料微结构-性能关系的机器学习","authors":"Sheila E. Whitman, Marat I. Latypov","doi":"10.1016/j.actamat.2025.121217","DOIUrl":null,"url":null,"abstract":"Machine learning of microstructure–property relationships from data is an emerging approach in computational materials science. Most existing machine learning efforts focus on the development of task-specific models for each microstructure–property relationship. We propose utilizing pre-trained foundational vision transformers for the extraction of task-agnostic microstructure features and subsequent light-weight machine learning of a microstructure-dependent property. We demonstrate our approach with pre-trained state-of-the-art vision transformers (CLIP, DINOv2, SAM) in two case studies on machine-learning: (i) elastic modulus of two-phase microstructures based on simulations data; and (ii) Vicker’s hardness of Ni-base and Co-base superalloys based on experimental data published in literature. Our results show the potential of foundational vision transformers for robust microstructure representation and efficient machine learning of microstructure–property relationships without the need for expensive task-specific training or fine-tuning of bespoke deep learning models.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"6 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning of microstructure–property relationships in materials leveraging microstructure representation from foundational vision transformers\",\"authors\":\"Sheila E. Whitman, Marat I. Latypov\",\"doi\":\"10.1016/j.actamat.2025.121217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning of microstructure–property relationships from data is an emerging approach in computational materials science. Most existing machine learning efforts focus on the development of task-specific models for each microstructure–property relationship. We propose utilizing pre-trained foundational vision transformers for the extraction of task-agnostic microstructure features and subsequent light-weight machine learning of a microstructure-dependent property. We demonstrate our approach with pre-trained state-of-the-art vision transformers (CLIP, DINOv2, SAM) in two case studies on machine-learning: (i) elastic modulus of two-phase microstructures based on simulations data; and (ii) Vicker’s hardness of Ni-base and Co-base superalloys based on experimental data published in literature. Our results show the potential of foundational vision transformers for robust microstructure representation and efficient machine learning of microstructure–property relationships without the need for expensive task-specific training or fine-tuning of bespoke deep learning models.\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.actamat.2025.121217\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2025.121217","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从数据中对微观结构-性能关系进行机器学习是计算材料科学中的一种新兴方法。大多数现有的机器学习工作都集中在为每个微观结构-属性关系开发特定于任务的模型上。我们建议利用预训练的基础视觉转换器来提取与任务无关的微观结构特征,并随后对微观结构相关的属性进行轻量级机器学习。在机器学习的两个案例研究中,我们用预训练的最先进的视觉变压器(CLIP, DINOv2, SAM)展示了我们的方法:(i)基于模拟数据的两相微结构的弹性模量;(ii)基于文献中公布的实验数据的镍基和钴基高温合金的维氏硬度。我们的研究结果表明,基础视觉转换器具有强大的微观结构表示和高效的微观结构-属性关系机器学习的潜力,而无需昂贵的特定任务训练或定制深度学习模型的微调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine learning of microstructure–property relationships in materials leveraging microstructure representation from foundational vision transformers

Machine learning of microstructure–property relationships in materials leveraging microstructure representation from foundational vision transformers
Machine learning of microstructure–property relationships from data is an emerging approach in computational materials science. Most existing machine learning efforts focus on the development of task-specific models for each microstructure–property relationship. We propose utilizing pre-trained foundational vision transformers for the extraction of task-agnostic microstructure features and subsequent light-weight machine learning of a microstructure-dependent property. We demonstrate our approach with pre-trained state-of-the-art vision transformers (CLIP, DINOv2, SAM) in two case studies on machine-learning: (i) elastic modulus of two-phase microstructures based on simulations data; and (ii) Vicker’s hardness of Ni-base and Co-base superalloys based on experimental data published in literature. Our results show the potential of foundational vision transformers for robust microstructure representation and efficient machine learning of microstructure–property relationships without the need for expensive task-specific training or fine-tuning of bespoke deep learning models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信