Jawad Kamran, Julian Hniopek and Thomas Bocklitz*,
{"title":"利用半经验量子化学迁移学习深度拉曼模型。","authors":"Jawad Kamran, Julian Hniopek and Thomas Bocklitz*, ","doi":"10.1021/acs.jcim.5c00513","DOIUrl":null,"url":null,"abstract":"<p >Biophotonic technologies such as Raman spectroscopy are powerful tools for obtaining highly specific molecular information. Due to its minimal sample preparation requirements, Raman spectroscopy is widely used across diverse scientific disciplines, often in combination with chemometrics, machine learning (ML), and deep learning (DL). However, Raman spectroscopy lacks large databases of independent Raman spectra for model training, leading to overfitting, overestimation, and limited model generalizability. We address this problem by generating simulated vibrational spectra using semiempirical quantum chemistry methods, enabling the efficient pretraining of deep learning models on large synthetic data sets. These pretrained models are then fine-tuned on a smaller experimental Raman data set of bacterial spectra. Transfer learning significantly reduces the computational cost while maintaining performance comparable to models trained from scratch in this real biophotonic application. The results validate the utility of synthetic data for pretraining deep Raman models and offer a scalable framework for spectral analysis in resource-limited settings.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 13","pages":"6632–6643"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.jcim.5c00513","citationCount":"0","resultStr":"{\"title\":\"Transfer-Learning Deep Raman Models Using Semiempirical Quantum Chemistry\",\"authors\":\"Jawad Kamran, Julian Hniopek and Thomas Bocklitz*, \",\"doi\":\"10.1021/acs.jcim.5c00513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Biophotonic technologies such as Raman spectroscopy are powerful tools for obtaining highly specific molecular information. Due to its minimal sample preparation requirements, Raman spectroscopy is widely used across diverse scientific disciplines, often in combination with chemometrics, machine learning (ML), and deep learning (DL). However, Raman spectroscopy lacks large databases of independent Raman spectra for model training, leading to overfitting, overestimation, and limited model generalizability. We address this problem by generating simulated vibrational spectra using semiempirical quantum chemistry methods, enabling the efficient pretraining of deep learning models on large synthetic data sets. These pretrained models are then fine-tuned on a smaller experimental Raman data set of bacterial spectra. Transfer learning significantly reduces the computational cost while maintaining performance comparable to models trained from scratch in this real biophotonic application. The results validate the utility of synthetic data for pretraining deep Raman models and offer a scalable framework for spectral analysis in resource-limited settings.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"65 13\",\"pages\":\"6632–6643\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.jcim.5c00513\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.5c00513\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.5c00513","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Transfer-Learning Deep Raman Models Using Semiempirical Quantum Chemistry
Biophotonic technologies such as Raman spectroscopy are powerful tools for obtaining highly specific molecular information. Due to its minimal sample preparation requirements, Raman spectroscopy is widely used across diverse scientific disciplines, often in combination with chemometrics, machine learning (ML), and deep learning (DL). However, Raman spectroscopy lacks large databases of independent Raman spectra for model training, leading to overfitting, overestimation, and limited model generalizability. We address this problem by generating simulated vibrational spectra using semiempirical quantum chemistry methods, enabling the efficient pretraining of deep learning models on large synthetic data sets. These pretrained models are then fine-tuned on a smaller experimental Raman data set of bacterial spectra. Transfer learning significantly reduces the computational cost while maintaining performance comparable to models trained from scratch in this real biophotonic application. The results validate the utility of synthetic data for pretraining deep Raman models and offer a scalable framework for spectral analysis in resource-limited settings.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.