肿瘤基质在预测卵巢癌预后中的定量和定性指标及其基于人工智能工具的研究扩展。

Molecular therapy. Oncology Pub Date : 2025-05-24 eCollection Date: 2025-06-18 DOI:10.1016/j.omton.2025.201001
Morgann Madill, Arpit Aggarwal, Anant Madabhushi, Britt K Erickson, Andrew C Nelson, Emil Lou, Martina Bazzaro
{"title":"肿瘤基质在预测卵巢癌预后中的定量和定性指标及其基于人工智能工具的研究扩展。","authors":"Morgann Madill, Arpit Aggarwal, Anant Madabhushi, Britt K Erickson, Andrew C Nelson, Emil Lou, Martina Bazzaro","doi":"10.1016/j.omton.2025.201001","DOIUrl":null,"url":null,"abstract":"<p><p>Epithelial ovarian cancer remains one of the deadliest gynecologic malignancies, with late-stage diagnosis, high recurrence rates, and resistance to platinum-based chemotherapy contributing to poor survival outcomes. Central to the effective management of ovarian cancer is the thorough evaluation of diagnostic and prognostic indicators. Critical determinants encompass the extent of the tumor; its stage and grade; and level of the circulating biomarker, CA-125. Additional tumor cell-centric factors such as BRCA1/2 mutation status, homologous recombination deficiency, and folate receptor-alpha (FRα) protein levels inform initial treatment and maintenance strategies. Unfortunately, these markers alone cannot fully predict outcomes or significantly improve survival rates. This review emphasizes the body of data suggesting that both quantitative and qualitative metrics of tumor stroma play a crucial role in the prognosis and outcomes of epithelial ovarian cancer. We examine quantitative and qualitative metrics such as stromal proportion, tumor density, stiffness, and texture. We explore how artificial intelligence (AI) tools advance the measurement of these parameters, offering unprecedented opportunities to integrate stromal biomarkers into clinical decision-making. By synthesizing emerging evidence, we propose a framework for leveraging stromal properties-individually and in combination-as novel prognostic indicators to improve outcomes for patients with ovarian cancer.</p>","PeriodicalId":519884,"journal":{"name":"Molecular therapy. Oncology","volume":"33 2","pages":"201001"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12169772/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantitative and qualitative metrics of tumor stroma in predicting ovarian cancer outcomes and expansion of its study with AI-based tools.\",\"authors\":\"Morgann Madill, Arpit Aggarwal, Anant Madabhushi, Britt K Erickson, Andrew C Nelson, Emil Lou, Martina Bazzaro\",\"doi\":\"10.1016/j.omton.2025.201001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epithelial ovarian cancer remains one of the deadliest gynecologic malignancies, with late-stage diagnosis, high recurrence rates, and resistance to platinum-based chemotherapy contributing to poor survival outcomes. Central to the effective management of ovarian cancer is the thorough evaluation of diagnostic and prognostic indicators. Critical determinants encompass the extent of the tumor; its stage and grade; and level of the circulating biomarker, CA-125. Additional tumor cell-centric factors such as BRCA1/2 mutation status, homologous recombination deficiency, and folate receptor-alpha (FRα) protein levels inform initial treatment and maintenance strategies. Unfortunately, these markers alone cannot fully predict outcomes or significantly improve survival rates. This review emphasizes the body of data suggesting that both quantitative and qualitative metrics of tumor stroma play a crucial role in the prognosis and outcomes of epithelial ovarian cancer. We examine quantitative and qualitative metrics such as stromal proportion, tumor density, stiffness, and texture. We explore how artificial intelligence (AI) tools advance the measurement of these parameters, offering unprecedented opportunities to integrate stromal biomarkers into clinical decision-making. By synthesizing emerging evidence, we propose a framework for leveraging stromal properties-individually and in combination-as novel prognostic indicators to improve outcomes for patients with ovarian cancer.</p>\",\"PeriodicalId\":519884,\"journal\":{\"name\":\"Molecular therapy. Oncology\",\"volume\":\"33 2\",\"pages\":\"201001\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12169772/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular therapy. Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.omton.2025.201001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/18 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular therapy. Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.omton.2025.201001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/18 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

上皮性卵巢癌仍然是最致命的妇科恶性肿瘤之一,其晚期诊断、高复发率和对铂基化疗的耐药性导致了较差的生存结果。卵巢癌有效管理的核心是对诊断和预后指标的全面评估。关键决定因素包括肿瘤的范围;它的阶段和等级;循环生物标志物CA-125的水平。其他肿瘤细胞中心因素如BRCA1/2突变状态、同源重组缺陷和叶酸受体α (FRα)蛋白水平决定了初始治疗和维持策略。不幸的是,仅凭这些标记不能完全预测结果或显著提高生存率。这篇综述强调了大量的数据表明,肿瘤基质的定量和定性指标在上皮性卵巢癌的预后和结局中都起着至关重要的作用。我们检查定量和定性指标,如基质比例,肿瘤密度,刚度和质地。我们探讨了人工智能(AI)工具如何推进这些参数的测量,为将基质生物标志物整合到临床决策中提供了前所未有的机会。通过综合新出现的证据,我们提出了一个框架,利用基质特性-单独和组合-作为新的预后指标,以改善卵巢癌患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative and qualitative metrics of tumor stroma in predicting ovarian cancer outcomes and expansion of its study with AI-based tools.

Epithelial ovarian cancer remains one of the deadliest gynecologic malignancies, with late-stage diagnosis, high recurrence rates, and resistance to platinum-based chemotherapy contributing to poor survival outcomes. Central to the effective management of ovarian cancer is the thorough evaluation of diagnostic and prognostic indicators. Critical determinants encompass the extent of the tumor; its stage and grade; and level of the circulating biomarker, CA-125. Additional tumor cell-centric factors such as BRCA1/2 mutation status, homologous recombination deficiency, and folate receptor-alpha (FRα) protein levels inform initial treatment and maintenance strategies. Unfortunately, these markers alone cannot fully predict outcomes or significantly improve survival rates. This review emphasizes the body of data suggesting that both quantitative and qualitative metrics of tumor stroma play a crucial role in the prognosis and outcomes of epithelial ovarian cancer. We examine quantitative and qualitative metrics such as stromal proportion, tumor density, stiffness, and texture. We explore how artificial intelligence (AI) tools advance the measurement of these parameters, offering unprecedented opportunities to integrate stromal biomarkers into clinical decision-making. By synthesizing emerging evidence, we propose a framework for leveraging stromal properties-individually and in combination-as novel prognostic indicators to improve outcomes for patients with ovarian cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信