$C^{2}D$:面向个性化文本到图像合成的上下文感知概念分解。

Jiang Xin, Xiaonan Fang, Xueling Zhu, Ju Ren, Yaoxue Zhang
{"title":"$C^{2}D$:面向个性化文本到图像合成的上下文感知概念分解。","authors":"Jiang Xin, Xiaonan Fang, Xueling Zhu, Ju Ren, Yaoxue Zhang","doi":"10.1109/TVCG.2025.3579776","DOIUrl":null,"url":null,"abstract":"<p><p>Concept decomposition is a technique for personalized text-to-image synthesis which learns textual embeddings of subconcepts from images that depicting an original concept. The learned subconcepts can then be composed to create new images. However, existing methods fail to address the issue of contextual conflicts when subconcepts from different sources are combined because contextual information remains encapsulated within the subconcept embeddings. To tackle this problem, we propose a Context-aware Concept Decomposition ($C^{2}D$) framework. Specifically, we introduce a Similarity-Guided Divergent Embedding (SGDE) method to obtain subconcept embeddings. Then, we eliminate the latent contextual dependence between the subconcept embeddings and reconstruct the contextual information using an independent contextual embedding. This independent context can be combined with various subconcepts, enabling more controllable text-to-image synthesis based on subconcept recombination. Extensive experimental results demonstrate that our method outperforms existing approaches in both image quality and contextual consistency.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$C^{2}D$: Context-aware Concept Decomposition for Personalized Text-to-image Synthesis.\",\"authors\":\"Jiang Xin, Xiaonan Fang, Xueling Zhu, Ju Ren, Yaoxue Zhang\",\"doi\":\"10.1109/TVCG.2025.3579776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Concept decomposition is a technique for personalized text-to-image synthesis which learns textual embeddings of subconcepts from images that depicting an original concept. The learned subconcepts can then be composed to create new images. However, existing methods fail to address the issue of contextual conflicts when subconcepts from different sources are combined because contextual information remains encapsulated within the subconcept embeddings. To tackle this problem, we propose a Context-aware Concept Decomposition ($C^{2}D$) framework. Specifically, we introduce a Similarity-Guided Divergent Embedding (SGDE) method to obtain subconcept embeddings. Then, we eliminate the latent contextual dependence between the subconcept embeddings and reconstruct the contextual information using an independent contextual embedding. This independent context can be combined with various subconcepts, enabling more controllable text-to-image synthesis based on subconcept recombination. Extensive experimental results demonstrate that our method outperforms existing approaches in both image quality and contextual consistency.</p>\",\"PeriodicalId\":94035,\"journal\":{\"name\":\"IEEE transactions on visualization and computer graphics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on visualization and computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2025.3579776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3579776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

概念分解是一种个性化的文本到图像合成技术,它从描述原始概念的图像中学习子概念的文本嵌入。然后可以将学习到的子概念组合起来创建新的图像。然而,当来自不同来源的子概念组合在一起时,现有的方法无法解决上下文冲突的问题,因为上下文信息仍然被封装在子概念嵌入中。为了解决这个问题,我们提出了一个上下文感知的概念分解($C^{2}D$)框架。具体来说,我们引入了一种相似引导发散嵌入(SGDE)方法来获得子概念嵌入。然后,我们消除子概念嵌入之间潜在的上下文依赖,并使用独立的上下文嵌入重建上下文信息。这种独立的上下文可以与各种子概念相结合,从而实现基于子概念重组的更可控的文本到图像合成。大量的实验结果表明,我们的方法在图像质量和上下文一致性方面都优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$C^{2}D$: Context-aware Concept Decomposition for Personalized Text-to-image Synthesis.

Concept decomposition is a technique for personalized text-to-image synthesis which learns textual embeddings of subconcepts from images that depicting an original concept. The learned subconcepts can then be composed to create new images. However, existing methods fail to address the issue of contextual conflicts when subconcepts from different sources are combined because contextual information remains encapsulated within the subconcept embeddings. To tackle this problem, we propose a Context-aware Concept Decomposition ($C^{2}D$) framework. Specifically, we introduce a Similarity-Guided Divergent Embedding (SGDE) method to obtain subconcept embeddings. Then, we eliminate the latent contextual dependence between the subconcept embeddings and reconstruct the contextual information using an independent contextual embedding. This independent context can be combined with various subconcepts, enabling more controllable text-to-image synthesis based on subconcept recombination. Extensive experimental results demonstrate that our method outperforms existing approaches in both image quality and contextual consistency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信