{"title":"蛋白质-蛋白质相互作用深度学习研究进展综述。","authors":"Jiafu Cui, Siqi Yang, Litai Yi, Qilemuge Xi, Dezhi Yang, Yongchun Zuo","doi":"10.1186/s13040-025-00457-6","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning, a cornerstone of artificial intelligence, is driving rapid advancements in computational biology. Protein-protein interactions (PPIs) are fundamental regulators of biological functions. With the inclusion of deep learning in PPI research, the field is undergoing transformative changes. Therefore, there is an urgent need for a comprehensive review and assessment of recent developments to improve analytical methods and open up a wider range of biomedical applications. This review meticulously assesses deep learning progress in PPI prediction from 2021 to 2025. We evaluate core architectures (GNNs, CNNs, RNNs) and pioneering approaches-attention-driven Transformers, multi-task frameworks, multimodal integration of sequence and structural data, transfer learning via BERT and ESM, and autoencoders for interaction characterization. Moreover, we examined enhanced algorithms for dealing with data imbalances, variations, and high-dimensional feature sparsity, as well as industry challenges (including shifting protein interactions, interactions with non-model organisms, and rare or unannotated protein interactions), and offered perspectives on the future of the field. In summary, this review systematically summarizes the latest advances and existing challenges in deep learning in the field of protein interaction analysis, providing a valuable reference for researchers in the fields of computational biology and deep learning.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"18 1","pages":"43"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168265/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recent advances in deep learning for protein-protein interaction: a review.\",\"authors\":\"Jiafu Cui, Siqi Yang, Litai Yi, Qilemuge Xi, Dezhi Yang, Yongchun Zuo\",\"doi\":\"10.1186/s13040-025-00457-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep learning, a cornerstone of artificial intelligence, is driving rapid advancements in computational biology. Protein-protein interactions (PPIs) are fundamental regulators of biological functions. With the inclusion of deep learning in PPI research, the field is undergoing transformative changes. Therefore, there is an urgent need for a comprehensive review and assessment of recent developments to improve analytical methods and open up a wider range of biomedical applications. This review meticulously assesses deep learning progress in PPI prediction from 2021 to 2025. We evaluate core architectures (GNNs, CNNs, RNNs) and pioneering approaches-attention-driven Transformers, multi-task frameworks, multimodal integration of sequence and structural data, transfer learning via BERT and ESM, and autoencoders for interaction characterization. Moreover, we examined enhanced algorithms for dealing with data imbalances, variations, and high-dimensional feature sparsity, as well as industry challenges (including shifting protein interactions, interactions with non-model organisms, and rare or unannotated protein interactions), and offered perspectives on the future of the field. In summary, this review systematically summarizes the latest advances and existing challenges in deep learning in the field of protein interaction analysis, providing a valuable reference for researchers in the fields of computational biology and deep learning.</p>\",\"PeriodicalId\":48947,\"journal\":{\"name\":\"Biodata Mining\",\"volume\":\"18 1\",\"pages\":\"43\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168265/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodata Mining\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13040-025-00457-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-025-00457-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Recent advances in deep learning for protein-protein interaction: a review.
Deep learning, a cornerstone of artificial intelligence, is driving rapid advancements in computational biology. Protein-protein interactions (PPIs) are fundamental regulators of biological functions. With the inclusion of deep learning in PPI research, the field is undergoing transformative changes. Therefore, there is an urgent need for a comprehensive review and assessment of recent developments to improve analytical methods and open up a wider range of biomedical applications. This review meticulously assesses deep learning progress in PPI prediction from 2021 to 2025. We evaluate core architectures (GNNs, CNNs, RNNs) and pioneering approaches-attention-driven Transformers, multi-task frameworks, multimodal integration of sequence and structural data, transfer learning via BERT and ESM, and autoencoders for interaction characterization. Moreover, we examined enhanced algorithms for dealing with data imbalances, variations, and high-dimensional feature sparsity, as well as industry challenges (including shifting protein interactions, interactions with non-model organisms, and rare or unannotated protein interactions), and offered perspectives on the future of the field. In summary, this review systematically summarizes the latest advances and existing challenges in deep learning in the field of protein interaction analysis, providing a valuable reference for researchers in the fields of computational biology and deep learning.
期刊介绍:
BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data.
Topical areas include, but are not limited to:
-Development, evaluation, and application of novel data mining and machine learning algorithms.
-Adaptation, evaluation, and application of traditional data mining and machine learning algorithms.
-Open-source software for the application of data mining and machine learning algorithms.
-Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies.
-Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.