Ya Wang, Lu Zeng, Pan Gong, Denghong Liu, Qianqian Meng, Konglong Shen, Zhihui Liu, Renming Zhong
{"title":"基于CBCT的平移误差校正后残留误差对左侧乳腺癌放疗剂量的影响。","authors":"Ya Wang, Lu Zeng, Pan Gong, Denghong Liu, Qianqian Meng, Konglong Shen, Zhihui Liu, Renming Zhong","doi":"10.1177/15330338251338489","DOIUrl":null,"url":null,"abstract":"<p><p>ObjectiveThis study analyzed the dosimetric impact of residual errors (rotational and deformation errors) in left-sided breast cancer radiotherapy after cone-beam CT (CBCT)-based translational errors correction.MethodsTwenty patients treated with intensity-modulated radiotherapy (IMRT) were retrospectively analyzed. Virtual CT images were generated by deforming and registering CBCT images with planning CT images. The accumulated dose was calculated to assess residual errors effects on target and organs at risk (OARs). A phantom test was conducted to evaluate rotational errors impacts.ResultsResults showed significant dose differences: for 4005 cGy, D98 and D95 of the breast (PTV<sub>b</sub>) decreased, and mean dose, V30, and V20 of the left lung reduced; for 5000 cGy, D98 of the supraclavicular lymph nodes (PTV<sub>sc</sub>) and PTVb, D95 of PTV<sub>b</sub>, and mean dose and V20 of the heart differed significantly. Phantom simulations revealed that pitch angles ≤-1.8° and roll/yaw angles >2° caused overdosing in the left lung and heart, with maximum dose differences of 31.89% (heart) and 19.19% (lung) for 4005 cGy, and 26.32% (heart) and 20.92% (PTV<sub>sc</sub>) for 5000 cGy.ConclusionResidual errors significantly affect dose distribution despite CBCT-based translational correction. Improved immobilization techniques or 6DOF couch correction are recommended to mitigate rotational errors.</p>","PeriodicalId":22203,"journal":{"name":"Technology in Cancer Research & Treatment","volume":"24 ","pages":"15330338251338489"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12174803/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of the Residual Errors on the Dose for Left-Sided Breast Cancer Radiotherapy After Translation Error Correction Based on CBCT.\",\"authors\":\"Ya Wang, Lu Zeng, Pan Gong, Denghong Liu, Qianqian Meng, Konglong Shen, Zhihui Liu, Renming Zhong\",\"doi\":\"10.1177/15330338251338489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ObjectiveThis study analyzed the dosimetric impact of residual errors (rotational and deformation errors) in left-sided breast cancer radiotherapy after cone-beam CT (CBCT)-based translational errors correction.MethodsTwenty patients treated with intensity-modulated radiotherapy (IMRT) were retrospectively analyzed. Virtual CT images were generated by deforming and registering CBCT images with planning CT images. The accumulated dose was calculated to assess residual errors effects on target and organs at risk (OARs). A phantom test was conducted to evaluate rotational errors impacts.ResultsResults showed significant dose differences: for 4005 cGy, D98 and D95 of the breast (PTV<sub>b</sub>) decreased, and mean dose, V30, and V20 of the left lung reduced; for 5000 cGy, D98 of the supraclavicular lymph nodes (PTV<sub>sc</sub>) and PTVb, D95 of PTV<sub>b</sub>, and mean dose and V20 of the heart differed significantly. Phantom simulations revealed that pitch angles ≤-1.8° and roll/yaw angles >2° caused overdosing in the left lung and heart, with maximum dose differences of 31.89% (heart) and 19.19% (lung) for 4005 cGy, and 26.32% (heart) and 20.92% (PTV<sub>sc</sub>) for 5000 cGy.ConclusionResidual errors significantly affect dose distribution despite CBCT-based translational correction. Improved immobilization techniques or 6DOF couch correction are recommended to mitigate rotational errors.</p>\",\"PeriodicalId\":22203,\"journal\":{\"name\":\"Technology in Cancer Research & Treatment\",\"volume\":\"24 \",\"pages\":\"15330338251338489\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12174803/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technology in Cancer Research & Treatment\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/15330338251338489\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology in Cancer Research & Treatment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15330338251338489","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Effect of the Residual Errors on the Dose for Left-Sided Breast Cancer Radiotherapy After Translation Error Correction Based on CBCT.
ObjectiveThis study analyzed the dosimetric impact of residual errors (rotational and deformation errors) in left-sided breast cancer radiotherapy after cone-beam CT (CBCT)-based translational errors correction.MethodsTwenty patients treated with intensity-modulated radiotherapy (IMRT) were retrospectively analyzed. Virtual CT images were generated by deforming and registering CBCT images with planning CT images. The accumulated dose was calculated to assess residual errors effects on target and organs at risk (OARs). A phantom test was conducted to evaluate rotational errors impacts.ResultsResults showed significant dose differences: for 4005 cGy, D98 and D95 of the breast (PTVb) decreased, and mean dose, V30, and V20 of the left lung reduced; for 5000 cGy, D98 of the supraclavicular lymph nodes (PTVsc) and PTVb, D95 of PTVb, and mean dose and V20 of the heart differed significantly. Phantom simulations revealed that pitch angles ≤-1.8° and roll/yaw angles >2° caused overdosing in the left lung and heart, with maximum dose differences of 31.89% (heart) and 19.19% (lung) for 4005 cGy, and 26.32% (heart) and 20.92% (PTVsc) for 5000 cGy.ConclusionResidual errors significantly affect dose distribution despite CBCT-based translational correction. Improved immobilization techniques or 6DOF couch correction are recommended to mitigate rotational errors.
期刊介绍:
Technology in Cancer Research & Treatment (TCRT) is a JCR-ranked, broad-spectrum, open access, peer-reviewed publication whose aim is to provide researchers and clinicians with a platform to share and discuss developments in the prevention, diagnosis, treatment, and monitoring of cancer.