{"title":"解纠缠潜子空间稳定神经解码的部分域自适应。","authors":"Puli Wang, Yu Qi, Gang Pan","doi":"10.1109/TBME.2025.3577222","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Brain-Computer Interfaces (BCI) have demonstrated significant potential in neural rehabilitation. However, the variability of non-stationary neural signals often leads to instabilities of behavioral decoding, posing critical obstacles to chronic applications. Domain adaptation technique offers a promising solution by obtaining the invariant neural representation against non-stationary signals through distribution alignment. Here, we demonstrate domain adaptation that directly applied to neural data may lead to unstable performance, mostly due to the common presence of task-irrelevant components within neural signals. To address this, we aim to identify task-relevant components to achieve more stable neural alignment.</p><p><strong>Methods: </strong>In this work, we propose a novel partial domain adaptation (PDA) framework that performs neural alignment within the task-relevant latent subspace. With pre-aligned short-time windows as input, the proposed latent space is constructed based on a causal dynamical system, enabling more flexible neural decoding. Within this latent space, task-relevant dynamical features are disentangled from task-irrelevant components through VAE-based representation learning and adversarial alignment. The aligned task-relevant features are then employed for neural decoding across domains.</p><p><strong>Results: </strong>Using Lyapunov theory, we analytically validated the improved stability of late our neural representations through alignment. Experiments with various neural datasets verified that PDA significantly enhanced the cross-session decoding performance.</p><p><strong>Conclusion: </strong>PDA successfully achieved stable neural representations across different experimental days, enabling reliable long-term decoding.</p><p><strong>Significance: </strong>Our approach provides a novel aspect for addressing the challenge of chronic reliability in real-world BCI deployments.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial Domain Adaptation for Stable Neural Decoding in Disentangled Latent Subspaces.\",\"authors\":\"Puli Wang, Yu Qi, Gang Pan\",\"doi\":\"10.1109/TBME.2025.3577222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Brain-Computer Interfaces (BCI) have demonstrated significant potential in neural rehabilitation. However, the variability of non-stationary neural signals often leads to instabilities of behavioral decoding, posing critical obstacles to chronic applications. Domain adaptation technique offers a promising solution by obtaining the invariant neural representation against non-stationary signals through distribution alignment. Here, we demonstrate domain adaptation that directly applied to neural data may lead to unstable performance, mostly due to the common presence of task-irrelevant components within neural signals. To address this, we aim to identify task-relevant components to achieve more stable neural alignment.</p><p><strong>Methods: </strong>In this work, we propose a novel partial domain adaptation (PDA) framework that performs neural alignment within the task-relevant latent subspace. With pre-aligned short-time windows as input, the proposed latent space is constructed based on a causal dynamical system, enabling more flexible neural decoding. Within this latent space, task-relevant dynamical features are disentangled from task-irrelevant components through VAE-based representation learning and adversarial alignment. The aligned task-relevant features are then employed for neural decoding across domains.</p><p><strong>Results: </strong>Using Lyapunov theory, we analytically validated the improved stability of late our neural representations through alignment. Experiments with various neural datasets verified that PDA significantly enhanced the cross-session decoding performance.</p><p><strong>Conclusion: </strong>PDA successfully achieved stable neural representations across different experimental days, enabling reliable long-term decoding.</p><p><strong>Significance: </strong>Our approach provides a novel aspect for addressing the challenge of chronic reliability in real-world BCI deployments.</p>\",\"PeriodicalId\":13245,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Engineering\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TBME.2025.3577222\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3577222","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Partial Domain Adaptation for Stable Neural Decoding in Disentangled Latent Subspaces.
Objective: Brain-Computer Interfaces (BCI) have demonstrated significant potential in neural rehabilitation. However, the variability of non-stationary neural signals often leads to instabilities of behavioral decoding, posing critical obstacles to chronic applications. Domain adaptation technique offers a promising solution by obtaining the invariant neural representation against non-stationary signals through distribution alignment. Here, we demonstrate domain adaptation that directly applied to neural data may lead to unstable performance, mostly due to the common presence of task-irrelevant components within neural signals. To address this, we aim to identify task-relevant components to achieve more stable neural alignment.
Methods: In this work, we propose a novel partial domain adaptation (PDA) framework that performs neural alignment within the task-relevant latent subspace. With pre-aligned short-time windows as input, the proposed latent space is constructed based on a causal dynamical system, enabling more flexible neural decoding. Within this latent space, task-relevant dynamical features are disentangled from task-irrelevant components through VAE-based representation learning and adversarial alignment. The aligned task-relevant features are then employed for neural decoding across domains.
Results: Using Lyapunov theory, we analytically validated the improved stability of late our neural representations through alignment. Experiments with various neural datasets verified that PDA significantly enhanced the cross-session decoding performance.
Conclusion: PDA successfully achieved stable neural representations across different experimental days, enabling reliable long-term decoding.
Significance: Our approach provides a novel aspect for addressing the challenge of chronic reliability in real-world BCI deployments.
期刊介绍:
IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.