癌症相关成纤维细胞通过上调脂质生物合成促进alk驱动的肺腺癌细胞的耐药。

IF 6 3区 医学 Q1 CELL BIOLOGY
Ann-Kathrin Daum, Lisa Schlicker, Marc A Schneider, Thomas Muley, Ursula Klingmüller, Almut Schulze, Michael Thomas, Petros Christopoulos, Holger Sültmann
{"title":"癌症相关成纤维细胞通过上调脂质生物合成促进alk驱动的肺腺癌细胞的耐药。","authors":"Ann-Kathrin Daum, Lisa Schlicker, Marc A Schneider, Thomas Muley, Ursula Klingmüller, Almut Schulze, Michael Thomas, Petros Christopoulos, Holger Sültmann","doi":"10.1186/s40170-025-00400-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Targeted therapy interventions using tyrosine kinase inhibitors (TKIs) provide encouraging treatment responses in patients with ALK-rearranged lung adenocarcinomas, yet resistance occurs almost inevitably. In addition to tumor cell-intrinsic resistance mechanisms, accumulating evidence suggests that cancer-associated fibroblasts (CAFs) within the tumor microenvironment contribute to therapy resistance. This study aimed to investigate CAF-driven molecular networks that shape the therapeutic susceptibility of ALK-driven lung adenocarcinoma cells.</p><p><strong>Methods: </strong>Three-dimensional (3D) spheroid co-cultures comprising ALK-rearranged lung adenocarcinoma cells and CAFs were utilized to model the tumor microenvironment. Single-cell RNA sequencing was performed to uncover transcriptional differences between TKI-treated homotypic and heterotypic spheroids. Functional assays assessed the effects of CAF-conditioned medium and CAF-secreted factors on tumor cell survival, proliferation, lipid metabolism, and downstream AKT signaling. The therapeutic potential of targeting metabolic vulnerabilities was evaluated using pharmacological inhibition of lipid metabolism and by ferroptosis induction.</p><p><strong>Results: </strong>CAFs significantly diminished the apoptotic response of lung tumor cells to ALK inhibitors while simultaneously enhancing their proliferative capacity. Single-cell RNA sequencing identified lipogenesis-associated genes as a key transcriptional difference between TKI-treated homotypic and heterotypic lung tumor spheroids. CAF-conditioned medium and the CAF-secreted factors HGF and NRG1 activated AKT signaling in 3D-cultured ALK-rearranged lung tumor cells, leading to increased de novo lipogenesis and suppression of lipid peroxidation. These metabolic adaptations were critical for promoting tumor cell survival and fostering therapy resistance. Notably, both dual inhibition of ALK and the lipid-regulatory factor SREBP-1, as well as co-treatment with ferroptosis inducers such as erastin or RSL3, effectively disrupted the CAF-driven metabolic-supportive niche and restored sensitivity of resistant lung tumor spheroids to ALK inhibition.</p><p><strong>Conclusions: </strong>This study highlights a critical role for CAFs in mediating resistance to ALK-TKIs by reprogramming lipid metabolism in ALK-rearranged lung cancer cells. It suggests that targeting these metabolic vulnerabilities, particularly through inhibition of lipid metabolism or induction of ferroptosis, could provide a novel therapeutic approach to overcome resistance and improve patient outcomes.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"28"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168422/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cancer-associated fibroblasts promote drug resistance in ALK-driven lung adenocarcinoma cells by upregulating lipid biosynthesis.\",\"authors\":\"Ann-Kathrin Daum, Lisa Schlicker, Marc A Schneider, Thomas Muley, Ursula Klingmüller, Almut Schulze, Michael Thomas, Petros Christopoulos, Holger Sültmann\",\"doi\":\"10.1186/s40170-025-00400-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Targeted therapy interventions using tyrosine kinase inhibitors (TKIs) provide encouraging treatment responses in patients with ALK-rearranged lung adenocarcinomas, yet resistance occurs almost inevitably. In addition to tumor cell-intrinsic resistance mechanisms, accumulating evidence suggests that cancer-associated fibroblasts (CAFs) within the tumor microenvironment contribute to therapy resistance. This study aimed to investigate CAF-driven molecular networks that shape the therapeutic susceptibility of ALK-driven lung adenocarcinoma cells.</p><p><strong>Methods: </strong>Three-dimensional (3D) spheroid co-cultures comprising ALK-rearranged lung adenocarcinoma cells and CAFs were utilized to model the tumor microenvironment. Single-cell RNA sequencing was performed to uncover transcriptional differences between TKI-treated homotypic and heterotypic spheroids. Functional assays assessed the effects of CAF-conditioned medium and CAF-secreted factors on tumor cell survival, proliferation, lipid metabolism, and downstream AKT signaling. The therapeutic potential of targeting metabolic vulnerabilities was evaluated using pharmacological inhibition of lipid metabolism and by ferroptosis induction.</p><p><strong>Results: </strong>CAFs significantly diminished the apoptotic response of lung tumor cells to ALK inhibitors while simultaneously enhancing their proliferative capacity. Single-cell RNA sequencing identified lipogenesis-associated genes as a key transcriptional difference between TKI-treated homotypic and heterotypic lung tumor spheroids. CAF-conditioned medium and the CAF-secreted factors HGF and NRG1 activated AKT signaling in 3D-cultured ALK-rearranged lung tumor cells, leading to increased de novo lipogenesis and suppression of lipid peroxidation. These metabolic adaptations were critical for promoting tumor cell survival and fostering therapy resistance. Notably, both dual inhibition of ALK and the lipid-regulatory factor SREBP-1, as well as co-treatment with ferroptosis inducers such as erastin or RSL3, effectively disrupted the CAF-driven metabolic-supportive niche and restored sensitivity of resistant lung tumor spheroids to ALK inhibition.</p><p><strong>Conclusions: </strong>This study highlights a critical role for CAFs in mediating resistance to ALK-TKIs by reprogramming lipid metabolism in ALK-rearranged lung cancer cells. It suggests that targeting these metabolic vulnerabilities, particularly through inhibition of lipid metabolism or induction of ferroptosis, could provide a novel therapeutic approach to overcome resistance and improve patient outcomes.</p>\",\"PeriodicalId\":9418,\"journal\":{\"name\":\"Cancer & Metabolism\",\"volume\":\"13 1\",\"pages\":\"28\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168422/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer & Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40170-025-00400-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40170-025-00400-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:使用酪氨酸激酶抑制剂(TKIs)的靶向治疗干预为alk重排肺腺癌患者提供了令人鼓舞的治疗反应,但耐药性几乎不可避免地发生。除了肿瘤细胞固有的耐药机制外,越来越多的证据表明,肿瘤微环境中的癌症相关成纤维细胞(CAFs)有助于治疗耐药。本研究旨在研究影响alk驱动肺腺癌细胞治疗易感性的ca驱动分子网络。方法:采用alk重排肺腺癌细胞和CAFs组成的三维球形共培养物模拟肿瘤微环境。单细胞RNA测序揭示了tki处理的同型和异型球体之间的转录差异。功能分析评估了cafc条件培养基和cafc分泌因子对肿瘤细胞存活、增殖、脂质代谢和下游AKT信号传导的影响。通过脂质代谢的药理抑制和铁下垂诱导来评估针对代谢脆弱性的治疗潜力。结果:CAFs可显著降低肺肿瘤细胞对ALK抑制剂的凋亡反应,同时增强其增殖能力。单细胞RNA测序发现脂肪生成相关基因是tki治疗的同型和异型肺肿瘤球体之间的关键转录差异。caf条件培养基和caf分泌因子HGF和NRG1激活3d培养alk重排肺肿瘤细胞的AKT信号,导致新生脂肪生成增加,脂质过氧化抑制。这些代谢适应对于促进肿瘤细胞存活和培养治疗耐药性至关重要。值得注意的是,ALK和脂质调节因子SREBP-1的双重抑制,以及与erastin或RSL3等铁吊诱导剂的联合治疗,都有效地破坏了钙驱动的代谢支持生态位,恢复了耐药肺肿瘤球体对ALK抑制的敏感性。结论:本研究强调了在alk重排肺癌细胞中,CAFs通过重编程脂质代谢介导对ALK-TKIs的耐药的关键作用。这表明,针对这些代谢脆弱性,特别是通过抑制脂质代谢或诱导铁下垂,可以提供一种新的治疗方法来克服耐药性并改善患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cancer-associated fibroblasts promote drug resistance in ALK-driven lung adenocarcinoma cells by upregulating lipid biosynthesis.

Background: Targeted therapy interventions using tyrosine kinase inhibitors (TKIs) provide encouraging treatment responses in patients with ALK-rearranged lung adenocarcinomas, yet resistance occurs almost inevitably. In addition to tumor cell-intrinsic resistance mechanisms, accumulating evidence suggests that cancer-associated fibroblasts (CAFs) within the tumor microenvironment contribute to therapy resistance. This study aimed to investigate CAF-driven molecular networks that shape the therapeutic susceptibility of ALK-driven lung adenocarcinoma cells.

Methods: Three-dimensional (3D) spheroid co-cultures comprising ALK-rearranged lung adenocarcinoma cells and CAFs were utilized to model the tumor microenvironment. Single-cell RNA sequencing was performed to uncover transcriptional differences between TKI-treated homotypic and heterotypic spheroids. Functional assays assessed the effects of CAF-conditioned medium and CAF-secreted factors on tumor cell survival, proliferation, lipid metabolism, and downstream AKT signaling. The therapeutic potential of targeting metabolic vulnerabilities was evaluated using pharmacological inhibition of lipid metabolism and by ferroptosis induction.

Results: CAFs significantly diminished the apoptotic response of lung tumor cells to ALK inhibitors while simultaneously enhancing their proliferative capacity. Single-cell RNA sequencing identified lipogenesis-associated genes as a key transcriptional difference between TKI-treated homotypic and heterotypic lung tumor spheroids. CAF-conditioned medium and the CAF-secreted factors HGF and NRG1 activated AKT signaling in 3D-cultured ALK-rearranged lung tumor cells, leading to increased de novo lipogenesis and suppression of lipid peroxidation. These metabolic adaptations were critical for promoting tumor cell survival and fostering therapy resistance. Notably, both dual inhibition of ALK and the lipid-regulatory factor SREBP-1, as well as co-treatment with ferroptosis inducers such as erastin or RSL3, effectively disrupted the CAF-driven metabolic-supportive niche and restored sensitivity of resistant lung tumor spheroids to ALK inhibition.

Conclusions: This study highlights a critical role for CAFs in mediating resistance to ALK-TKIs by reprogramming lipid metabolism in ALK-rearranged lung cancer cells. It suggests that targeting these metabolic vulnerabilities, particularly through inhibition of lipid metabolism or induction of ferroptosis, could provide a novel therapeutic approach to overcome resistance and improve patient outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
1.70%
发文量
17
审稿时长
14 weeks
期刊介绍: Cancer & Metabolism welcomes studies on all aspects of the relationship between cancer and metabolism, including: -Molecular biology and genetics of cancer metabolism -Whole-body metabolism, including diabetes and obesity, in relation to cancer -Metabolomics in relation to cancer; -Metabolism-based imaging -Preclinical and clinical studies of metabolism-related cancer therapies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信