GTE-PPIS:基于图变换和等变图神经网络的蛋白质相互作用位点预测器。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Xun Wang, Tongyu Han, Runqiu Feng, Zhijun Xia, Hanyu Wang, Wenqian Yu, Huanhuan Dai, Haonan Song, Tao Song
{"title":"GTE-PPIS:基于图变换和等变图神经网络的蛋白质相互作用位点预测器。","authors":"Xun Wang, Tongyu Han, Runqiu Feng, Zhijun Xia, Hanyu Wang, Wenqian Yu, Huanhuan Dai, Haonan Song, Tao Song","doi":"10.1093/bib/bbaf290","DOIUrl":null,"url":null,"abstract":"<p><p>Protein-protein interactions (PPIs) play a critical role in cellular functions, which are essential for maintaining the proper physiological state of organisms. Therefore, identifying PPI sites with high accuracy is crucial. Recently, graph neural networks (GNNs) have achieved significant progress in predicting PPI sites, but there is still potential for further enhancement. In this study, we introduce GTE-PPIS, an innovative PPI site predictor that utilizes two components: a graph transformer and an equivariant GNN, to collaboratively extract features. These extracted features are subsequently processed through a multilayer perceptron to generate the final predictions. Our experimental results show that GTE-PPIS consistently outperforms existing methods on multiple evaluation metrics across benchmark datasets, strongly supporting the effectiveness of our approach.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GTE-PPIS: a protein-protein interaction site predictor based on graph transformer and equivariant graph neural network.\",\"authors\":\"Xun Wang, Tongyu Han, Runqiu Feng, Zhijun Xia, Hanyu Wang, Wenqian Yu, Huanhuan Dai, Haonan Song, Tao Song\",\"doi\":\"10.1093/bib/bbaf290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein-protein interactions (PPIs) play a critical role in cellular functions, which are essential for maintaining the proper physiological state of organisms. Therefore, identifying PPI sites with high accuracy is crucial. Recently, graph neural networks (GNNs) have achieved significant progress in predicting PPI sites, but there is still potential for further enhancement. In this study, we introduce GTE-PPIS, an innovative PPI site predictor that utilizes two components: a graph transformer and an equivariant GNN, to collaboratively extract features. These extracted features are subsequently processed through a multilayer perceptron to generate the final predictions. Our experimental results show that GTE-PPIS consistently outperforms existing methods on multiple evaluation metrics across benchmark datasets, strongly supporting the effectiveness of our approach.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf290\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf290","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质-蛋白质相互作用(PPIs)在细胞功能中起着至关重要的作用,对维持生物体的正常生理状态至关重要。因此,准确识别PPI位点是至关重要的。近年来,图神经网络(gnn)在预测PPI位点方面取得了重大进展,但仍有进一步增强的潜力。在本研究中,我们介绍了GTE-PPIS,这是一种创新的PPI位点预测器,它利用两个组件:图转换器和等变GNN来协同提取特征。这些提取的特征随后通过多层感知器进行处理,以生成最终的预测。我们的实验结果表明,GTE-PPIS在跨基准数据集的多个评估指标上始终优于现有方法,有力地支持了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GTE-PPIS: a protein-protein interaction site predictor based on graph transformer and equivariant graph neural network.

Protein-protein interactions (PPIs) play a critical role in cellular functions, which are essential for maintaining the proper physiological state of organisms. Therefore, identifying PPI sites with high accuracy is crucial. Recently, graph neural networks (GNNs) have achieved significant progress in predicting PPI sites, but there is still potential for further enhancement. In this study, we introduce GTE-PPIS, an innovative PPI site predictor that utilizes two components: a graph transformer and an equivariant GNN, to collaboratively extract features. These extracted features are subsequently processed through a multilayer perceptron to generate the final predictions. Our experimental results show that GTE-PPIS consistently outperforms existing methods on multiple evaluation metrics across benchmark datasets, strongly supporting the effectiveness of our approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信