Harman Mehta, Jose Jimenez, Rodrigo Ledesma-Amaro, Guy-Bart Stan
{"title":"紫罗兰素合成菌群分工潜力的研究。","authors":"Harman Mehta, Jose Jimenez, Rodrigo Ledesma-Amaro, Guy-Bart Stan","doi":"10.1021/acssynbio.5c00120","DOIUrl":null,"url":null,"abstract":"<p><p>With advancements in synthetic biology and metabolic engineering, microorganisms can now be engineered to perform increasingly complex functions, which may be limited by the resources available in individual cells. Introducing heterologous metabolic pathways introduces both genetic burden due to the competition for cellular transcription and translational machinery, as well as metabolic burden due to the redirection of metabolic flux from the native metabolic pathways. Division of labor in synthetic microbial communities offers a promising approach to enhance metabolic efficiency and resilience in bioproduction. By distributing complex metabolic pathways across multiple subpopulations, the resource competition and metabolic burden imposed on an individual cell are reduced, potentially enabling more efficient production of target compounds. Violacein is a high-value pigment with antitumor properties that exemplifies such a challenge due to its complex bioproduction pathway, imposing a significant metabolic burden on host cells. In this study, we investigated the benefits of division of labor for violacein production by splitting the violacein bioproduction pathway between two subpopulations of <i><i>Escherichia coli</i></i>-based synthetic communities. We tested several pathway splitting strategies and reported that splitting the pathway into two subpopulations expressing VioABE and VioDC at a final composition of 60:40 yields a 2.5-fold increase in violacein production as compared to a monoculture. We demonstrated that the coculture outperforms the monoculture when both subpopulations exhibit similar metabolic burden levels, resulting in comparable growth rates, and when both subpopulations are present in sufficiently high proportions.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":"2703-2709"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12281613/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigating the Potential of Division of Labor in Synthetic Bacterial Communities for the Production of Violacein.\",\"authors\":\"Harman Mehta, Jose Jimenez, Rodrigo Ledesma-Amaro, Guy-Bart Stan\",\"doi\":\"10.1021/acssynbio.5c00120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With advancements in synthetic biology and metabolic engineering, microorganisms can now be engineered to perform increasingly complex functions, which may be limited by the resources available in individual cells. Introducing heterologous metabolic pathways introduces both genetic burden due to the competition for cellular transcription and translational machinery, as well as metabolic burden due to the redirection of metabolic flux from the native metabolic pathways. Division of labor in synthetic microbial communities offers a promising approach to enhance metabolic efficiency and resilience in bioproduction. By distributing complex metabolic pathways across multiple subpopulations, the resource competition and metabolic burden imposed on an individual cell are reduced, potentially enabling more efficient production of target compounds. Violacein is a high-value pigment with antitumor properties that exemplifies such a challenge due to its complex bioproduction pathway, imposing a significant metabolic burden on host cells. In this study, we investigated the benefits of division of labor for violacein production by splitting the violacein bioproduction pathway between two subpopulations of <i><i>Escherichia coli</i></i>-based synthetic communities. We tested several pathway splitting strategies and reported that splitting the pathway into two subpopulations expressing VioABE and VioDC at a final composition of 60:40 yields a 2.5-fold increase in violacein production as compared to a monoculture. We demonstrated that the coculture outperforms the monoculture when both subpopulations exhibit similar metabolic burden levels, resulting in comparable growth rates, and when both subpopulations are present in sufficiently high proportions.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":\" \",\"pages\":\"2703-2709\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12281613/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acssynbio.5c00120\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.5c00120","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Investigating the Potential of Division of Labor in Synthetic Bacterial Communities for the Production of Violacein.
With advancements in synthetic biology and metabolic engineering, microorganisms can now be engineered to perform increasingly complex functions, which may be limited by the resources available in individual cells. Introducing heterologous metabolic pathways introduces both genetic burden due to the competition for cellular transcription and translational machinery, as well as metabolic burden due to the redirection of metabolic flux from the native metabolic pathways. Division of labor in synthetic microbial communities offers a promising approach to enhance metabolic efficiency and resilience in bioproduction. By distributing complex metabolic pathways across multiple subpopulations, the resource competition and metabolic burden imposed on an individual cell are reduced, potentially enabling more efficient production of target compounds. Violacein is a high-value pigment with antitumor properties that exemplifies such a challenge due to its complex bioproduction pathway, imposing a significant metabolic burden on host cells. In this study, we investigated the benefits of division of labor for violacein production by splitting the violacein bioproduction pathway between two subpopulations of Escherichia coli-based synthetic communities. We tested several pathway splitting strategies and reported that splitting the pathway into two subpopulations expressing VioABE and VioDC at a final composition of 60:40 yields a 2.5-fold increase in violacein production as compared to a monoculture. We demonstrated that the coculture outperforms the monoculture when both subpopulations exhibit similar metabolic burden levels, resulting in comparable growth rates, and when both subpopulations are present in sufficiently high proportions.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.