基于人工突触的智能光控液晶网络驱动器

IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Infomat Pub Date : 2025-03-12 DOI:10.1002/inf2.70008
Yuhang Song, Junyao Zhang, Zejun Sun, Haixia Liang, Tongrui Sun, Zhimin Lu, Shucong Li, Yuxing Yao, Xiaoguang Wang, Yang Xu, Jia Huang
{"title":"基于人工突触的智能光控液晶网络驱动器","authors":"Yuhang Song,&nbsp;Junyao Zhang,&nbsp;Zejun Sun,&nbsp;Haixia Liang,&nbsp;Tongrui Sun,&nbsp;Zhimin Lu,&nbsp;Shucong Li,&nbsp;Yuxing Yao,&nbsp;Xiaoguang Wang,&nbsp;Yang Xu,&nbsp;Jia Huang","doi":"10.1002/inf2.70008","DOIUrl":null,"url":null,"abstract":"<p>Various forms of intelligent light-controlled soft actuators and robots rely on advanced material architectures and bionic systems to enable programmable remote actuation and multifunctionality. Despite advancements, significant challenges remain in developing actuators and robots that can effectively mimic the low-intensity, wide-wavelength light signal sensing and processing functions observed in living organisms. Herein, we report a design strategy that integrates light-responsive artificial synapses (AS) with liquid crystal networks (LCNs) to create bionic light-controlled LCN soft actuators (AS-LCNs). Remarkably, AS-LCNs can be controlled with light intensities as low as 0.68 mW cm<sup>−2</sup>, a value comparable to the light intensity perceivable by the human eye. These AS-LCNs can perform programmable intelligent sensing, learning, and memory within a wide wavelength range from 365 nm to 808 nm. Additionally, our system demonstrates time-related proofs of concept for a tachycardia alarm and a porcupine defense behavior simulation. Overall, this work addresses the limitations of traditional light-controlled soft actuators and robots in signal reception and processing, paving the way for the development of intelligent soft actuators and robots that emulate the cognitive abilities of living organisms.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"7 6","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.70008","citationCount":"0","resultStr":"{\"title\":\"Artificial synapse-based intelligent light-controlled liquid crystal network actuators\",\"authors\":\"Yuhang Song,&nbsp;Junyao Zhang,&nbsp;Zejun Sun,&nbsp;Haixia Liang,&nbsp;Tongrui Sun,&nbsp;Zhimin Lu,&nbsp;Shucong Li,&nbsp;Yuxing Yao,&nbsp;Xiaoguang Wang,&nbsp;Yang Xu,&nbsp;Jia Huang\",\"doi\":\"10.1002/inf2.70008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Various forms of intelligent light-controlled soft actuators and robots rely on advanced material architectures and bionic systems to enable programmable remote actuation and multifunctionality. Despite advancements, significant challenges remain in developing actuators and robots that can effectively mimic the low-intensity, wide-wavelength light signal sensing and processing functions observed in living organisms. Herein, we report a design strategy that integrates light-responsive artificial synapses (AS) with liquid crystal networks (LCNs) to create bionic light-controlled LCN soft actuators (AS-LCNs). Remarkably, AS-LCNs can be controlled with light intensities as low as 0.68 mW cm<sup>−2</sup>, a value comparable to the light intensity perceivable by the human eye. These AS-LCNs can perform programmable intelligent sensing, learning, and memory within a wide wavelength range from 365 nm to 808 nm. Additionally, our system demonstrates time-related proofs of concept for a tachycardia alarm and a porcupine defense behavior simulation. Overall, this work addresses the limitations of traditional light-controlled soft actuators and robots in signal reception and processing, paving the way for the development of intelligent soft actuators and robots that emulate the cognitive abilities of living organisms.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":48538,\"journal\":{\"name\":\"Infomat\",\"volume\":\"7 6\",\"pages\":\"\"},\"PeriodicalIF\":22.7000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.70008\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infomat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/inf2.70008\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.70008","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

各种形式的智能光控软致动器和机器人依赖于先进的材料结构和仿生系统来实现可编程的远程致动和多功能。尽管取得了进步,但在开发能够有效模仿生物体内观察到的低强度、宽波长光信号传感和处理功能的执行器和机器人方面仍然存在重大挑战。在此,我们报告了一种设计策略,将光响应人工突触(AS)与液晶网络(LCN)相结合,以创建仿生光控LCN软致动器(AS-LCN)。值得注意的是,as - lcn可以在低至0.68 mW cm - 2的光强度下进行控制,这一值与人眼可感知的光强度相当。这些as - lcn可以在365 nm到808 nm的宽波长范围内进行可编程的智能传感、学习和记忆。此外,我们的系统还演示了与时间相关的心动过速警报和豪猪防御行为模拟的概念验证。总的来说,这项工作解决了传统光控软执行器和机器人在信号接收和处理方面的局限性,为开发模仿生物体认知能力的智能软执行器和机器人铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Artificial synapse-based intelligent light-controlled liquid crystal network actuators

Artificial synapse-based intelligent light-controlled liquid crystal network actuators

Various forms of intelligent light-controlled soft actuators and robots rely on advanced material architectures and bionic systems to enable programmable remote actuation and multifunctionality. Despite advancements, significant challenges remain in developing actuators and robots that can effectively mimic the low-intensity, wide-wavelength light signal sensing and processing functions observed in living organisms. Herein, we report a design strategy that integrates light-responsive artificial synapses (AS) with liquid crystal networks (LCNs) to create bionic light-controlled LCN soft actuators (AS-LCNs). Remarkably, AS-LCNs can be controlled with light intensities as low as 0.68 mW cm−2, a value comparable to the light intensity perceivable by the human eye. These AS-LCNs can perform programmable intelligent sensing, learning, and memory within a wide wavelength range from 365 nm to 808 nm. Additionally, our system demonstrates time-related proofs of concept for a tachycardia alarm and a porcupine defense behavior simulation. Overall, this work addresses the limitations of traditional light-controlled soft actuators and robots in signal reception and processing, paving the way for the development of intelligent soft actuators and robots that emulate the cognitive abilities of living organisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Infomat
Infomat MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
37.70
自引率
3.10%
发文量
111
审稿时长
8 weeks
期刊介绍: InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信