为热管理量身定制的具有电性能的3D打印材料

Q3 Materials Science
Marialuigia Raimondo, Francesca Aliberti, Elisa Calabrese, Roberto Pantani, Teresa Rosaria Verde, Andrea Sorrentino, Liberata Guadagno
{"title":"为热管理量身定制的具有电性能的3D打印材料","authors":"Marialuigia Raimondo,&nbsp;Francesca Aliberti,&nbsp;Elisa Calabrese,&nbsp;Roberto Pantani,&nbsp;Teresa Rosaria Verde,&nbsp;Andrea Sorrentino,&nbsp;Liberata Guadagno","doi":"10.1002/masy.70030","DOIUrl":null,"url":null,"abstract":"<p>FDM (fused deposition modeling) 3D-printed parts, based on acrylonitrile butadiene styrene (ABS) with multi-walled carbon nanotubes (MWCNTs), are manufactured to obtain different multi-scale configurations of the internal conductive pathways. By appropriately selecting materials and printing parameters, it is possible to align MWCNTs along the printing direction, leading to an increase of electrical conductivity from 6.88  × 10<sup>−2</sup> S/m before printing to 1.19 × 10<sup>1</sup> S/m of a single printed filament. Consequently, the conductive network arrangement through the sample justifies the higher electrical conductivity parallel to the printing direction (1.22 S/m) than its value perpendicularly measured (7.34 × 10<sup>−2</sup> S/m) in 3D-printed samples. This approach, together with a suitable choice of the electrical contact position, allows controlling the flow of the electrical current, conferring parts the ability to heat up when subjected to an electrical source selectively. This energy-saving strategy can be advantageously applied to print quickly, in a single step, electronic devices, thermistors capable of converting electrical energy into thermal energy, heat exchangers, and electromagnetic interference (EMI) and radio frequency interference (RFI) shielding.</p>","PeriodicalId":18107,"journal":{"name":"Macromolecular Symposia","volume":"414 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/masy.70030","citationCount":"0","resultStr":"{\"title\":\"3D Printed Materials with Electrical Properties Tailored for Thermal Management\",\"authors\":\"Marialuigia Raimondo,&nbsp;Francesca Aliberti,&nbsp;Elisa Calabrese,&nbsp;Roberto Pantani,&nbsp;Teresa Rosaria Verde,&nbsp;Andrea Sorrentino,&nbsp;Liberata Guadagno\",\"doi\":\"10.1002/masy.70030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>FDM (fused deposition modeling) 3D-printed parts, based on acrylonitrile butadiene styrene (ABS) with multi-walled carbon nanotubes (MWCNTs), are manufactured to obtain different multi-scale configurations of the internal conductive pathways. By appropriately selecting materials and printing parameters, it is possible to align MWCNTs along the printing direction, leading to an increase of electrical conductivity from 6.88  × 10<sup>−2</sup> S/m before printing to 1.19 × 10<sup>1</sup> S/m of a single printed filament. Consequently, the conductive network arrangement through the sample justifies the higher electrical conductivity parallel to the printing direction (1.22 S/m) than its value perpendicularly measured (7.34 × 10<sup>−2</sup> S/m) in 3D-printed samples. This approach, together with a suitable choice of the electrical contact position, allows controlling the flow of the electrical current, conferring parts the ability to heat up when subjected to an electrical source selectively. This energy-saving strategy can be advantageously applied to print quickly, in a single step, electronic devices, thermistors capable of converting electrical energy into thermal energy, heat exchangers, and electromagnetic interference (EMI) and radio frequency interference (RFI) shielding.</p>\",\"PeriodicalId\":18107,\"journal\":{\"name\":\"Macromolecular Symposia\",\"volume\":\"414 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/masy.70030\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Symposia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/masy.70030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Symposia","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/masy.70030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

基于丙烯腈-丁二烯-苯乙烯(ABS)和多壁碳纳米管(MWCNTs),制造了FDM(熔融沉积建模)3d打印部件,以获得不同的内部导电路径的多尺度配置。通过适当选择材料和打印参数,可以使MWCNTs沿着打印方向排列,从而使单个打印灯丝的电导率从打印前的6.88 × 10−2 S/m提高到1.19 × 101 S/m。因此,通过样品的导电网络排列证明了3d打印样品中平行于打印方向的电导率(1.22 S/m)高于垂直测量的电导率(7.34 × 10−2 S/m)。这种方法,加上电接触位置的合适选择,允许控制电流的流动,赋予部件在有选择地受到电源时加热的能力。这种节能策略可以有利地应用于快速打印,在一个步骤,电子设备,热敏电阻能够将电能转换为热能,热交换器,以及电磁干扰(EMI)和射频干扰(RFI)屏蔽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

3D Printed Materials with Electrical Properties Tailored for Thermal Management

3D Printed Materials with Electrical Properties Tailored for Thermal Management

FDM (fused deposition modeling) 3D-printed parts, based on acrylonitrile butadiene styrene (ABS) with multi-walled carbon nanotubes (MWCNTs), are manufactured to obtain different multi-scale configurations of the internal conductive pathways. By appropriately selecting materials and printing parameters, it is possible to align MWCNTs along the printing direction, leading to an increase of electrical conductivity from 6.88  × 10−2 S/m before printing to 1.19 × 101 S/m of a single printed filament. Consequently, the conductive network arrangement through the sample justifies the higher electrical conductivity parallel to the printing direction (1.22 S/m) than its value perpendicularly measured (7.34 × 10−2 S/m) in 3D-printed samples. This approach, together with a suitable choice of the electrical contact position, allows controlling the flow of the electrical current, conferring parts the ability to heat up when subjected to an electrical source selectively. This energy-saving strategy can be advantageously applied to print quickly, in a single step, electronic devices, thermistors capable of converting electrical energy into thermal energy, heat exchangers, and electromagnetic interference (EMI) and radio frequency interference (RFI) shielding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Symposia
Macromolecular Symposia Materials Science-Polymers and Plastics
CiteScore
1.50
自引率
0.00%
发文量
226
期刊介绍: Macromolecular Symposia presents state-of-the-art research articles in the field of macromolecular chemistry and physics. All submitted contributions are peer-reviewed to ensure a high quality of published manuscripts. Accepted articles will be typeset and published as a hardcover edition together with online publication at Wiley InterScience, thereby guaranteeing an immediate international dissemination.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信