基于灵敏度分析的可解释扩散变压器在消费电子制造中的异常检测

IF 4.3 2区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ling Yi;Shiyu Liu;Li Zhou;Zhaolong Ning;Jiajie Song;Qingda Chen;Ke Zhang;Jinliang Ding
{"title":"基于灵敏度分析的可解释扩散变压器在消费电子制造中的异常检测","authors":"Ling Yi;Shiyu Liu;Li Zhou;Zhaolong Ning;Jiajie Song;Qingda Chen;Ke Zhang;Jinliang Ding","doi":"10.1109/TCE.2025.3527809","DOIUrl":null,"url":null,"abstract":"Consumer electronics play a crucial role in the artificial intelligence Internet of Things (AIoT), with anomaly detection (AD) being particularly critical for the consumer product manufacturing industry. However, existing AD methods suffer from limitations such as poor detection accuracy and lack of explainability, hindering their widespread adoption in industrial manufacturing. To address these issues, we propose SADiTAD, a Sensitivity Analysis-based Diffusion Transformer for Anomaly Detection. This model comprises a diffusion transformer (DiT)-based reconstruction enhancement sub-network and a vision transformer (ViT)-based detection sub-network. In the DiT sub-network, we introduce a structural similarity index measure (SSIM)-guided one-step denoising method to expedite the denoising process. Additionally, to enhance the model’s explainability, we develop a sensitivity analysis-based ViT (SA-ViT) model, which evaluates the sensitivity of input embeddings to various image regions to determine if the fault region is being accurately identified during anomaly detection. The proposed SADiTAD model has been evaluated on public datasets MVTec AD and VisA, demonstrating superior performance over existing state-of-the-art anomaly detection methods and providing enhanced explainability.","PeriodicalId":13208,"journal":{"name":"IEEE Transactions on Consumer Electronics","volume":"71 1","pages":"2039-2050"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity Analysis-Based Explainable Diffusion Transformers for Anomaly Detection in Consumer Electronics Manufacturing\",\"authors\":\"Ling Yi;Shiyu Liu;Li Zhou;Zhaolong Ning;Jiajie Song;Qingda Chen;Ke Zhang;Jinliang Ding\",\"doi\":\"10.1109/TCE.2025.3527809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consumer electronics play a crucial role in the artificial intelligence Internet of Things (AIoT), with anomaly detection (AD) being particularly critical for the consumer product manufacturing industry. However, existing AD methods suffer from limitations such as poor detection accuracy and lack of explainability, hindering their widespread adoption in industrial manufacturing. To address these issues, we propose SADiTAD, a Sensitivity Analysis-based Diffusion Transformer for Anomaly Detection. This model comprises a diffusion transformer (DiT)-based reconstruction enhancement sub-network and a vision transformer (ViT)-based detection sub-network. In the DiT sub-network, we introduce a structural similarity index measure (SSIM)-guided one-step denoising method to expedite the denoising process. Additionally, to enhance the model’s explainability, we develop a sensitivity analysis-based ViT (SA-ViT) model, which evaluates the sensitivity of input embeddings to various image regions to determine if the fault region is being accurately identified during anomaly detection. The proposed SADiTAD model has been evaluated on public datasets MVTec AD and VisA, demonstrating superior performance over existing state-of-the-art anomaly detection methods and providing enhanced explainability.\",\"PeriodicalId\":13208,\"journal\":{\"name\":\"IEEE Transactions on Consumer Electronics\",\"volume\":\"71 1\",\"pages\":\"2039-2050\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Consumer Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10835408/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Consumer Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10835408/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

消费电子产品在人工智能物联网(AIoT)中发挥着至关重要的作用,异常检测(AD)对消费产品制造业尤为重要。然而,现有的AD方法存在检测精度差、缺乏可解释性等局限性,阻碍了它们在工业制造中的广泛应用。为了解决这些问题,我们提出了SADiTAD,一种基于灵敏度分析的异常检测扩散变压器。该模型包括一个基于扩散变压器(DiT)的重建增强子网络和一个基于视觉变压器(ViT)的检测子网络。在DiT子网络中,我们引入了一种结构相似指数(SSIM)导向的一步去噪方法,加快了去噪过程。此外,为了提高模型的可解释性,我们开发了一种基于灵敏度分析的ViT (SA-ViT)模型,该模型评估输入嵌入对不同图像区域的灵敏度,以确定异常检测过程中是否准确识别了故障区域。提出的SADiTAD模型已经在公共数据集MVTec AD和VisA上进行了评估,证明了比现有最先进的异常检测方法更优越的性能,并提供了更好的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitivity Analysis-Based Explainable Diffusion Transformers for Anomaly Detection in Consumer Electronics Manufacturing
Consumer electronics play a crucial role in the artificial intelligence Internet of Things (AIoT), with anomaly detection (AD) being particularly critical for the consumer product manufacturing industry. However, existing AD methods suffer from limitations such as poor detection accuracy and lack of explainability, hindering their widespread adoption in industrial manufacturing. To address these issues, we propose SADiTAD, a Sensitivity Analysis-based Diffusion Transformer for Anomaly Detection. This model comprises a diffusion transformer (DiT)-based reconstruction enhancement sub-network and a vision transformer (ViT)-based detection sub-network. In the DiT sub-network, we introduce a structural similarity index measure (SSIM)-guided one-step denoising method to expedite the denoising process. Additionally, to enhance the model’s explainability, we develop a sensitivity analysis-based ViT (SA-ViT) model, which evaluates the sensitivity of input embeddings to various image regions to determine if the fault region is being accurately identified during anomaly detection. The proposed SADiTAD model has been evaluated on public datasets MVTec AD and VisA, demonstrating superior performance over existing state-of-the-art anomaly detection methods and providing enhanced explainability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
9.30%
发文量
59
审稿时长
3.3 months
期刊介绍: The main focus for the IEEE Transactions on Consumer Electronics is the engineering and research aspects of the theory, design, construction, manufacture or end use of mass market electronics, systems, software and services for consumers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信