低能量(1-20 eV)电子显微镜能产生无损伤的生物样品图像吗?

IF 2 3区 工程技术 Q2 MICROSCOPY
Yi Zheng, Léon Sanche
{"title":"低能量(1-20 eV)电子显微镜能产生无损伤的生物样品图像吗?","authors":"Yi Zheng,&nbsp;Léon Sanche","doi":"10.1016/j.ultramic.2025.114197","DOIUrl":null,"url":null,"abstract":"<div><div>Electron microscopy constitutes an efficient and well-established method to visualize biological material on the nanoscale. The image is usually produced by a high energy electron beam, which can damage the biological sample. To reduce image degradation, Neu et al. [Ultramicroscopy 222 (2021) 113,199] recently suggested the possibility of damage-free imaging of such samples at nm resolution using as a probe low energy electron (LEEs). The aims of the present article are to 1) present a simple and short description of LEE inelastic scattering and attachment in molecular solids in the 0–20 eV range, 2) show that principally due to the formation of transient anions (TAs) in biological material, by temporary LEE attachment to molecular sites, damage-free electron microscopy may be difficult to achieve and 3) suggest specimen conditions that reduce the damage produced by TAs to inflict minimum damage to biological samples in LEE microscopy. We provide examples of lesions induced by electrons of energies below 3 eV in short DNA strands composed of 16 base-pair oligonucleotides and on the 1–20 eV dependence of effective damage yields from LEE-bombarded plasmid DNA. The damaged samples were produced from 5-monolayer films lyophilized on tantalum substrates and transferred to ultra-high vacuum to be bombarded with LEEs. The products were identified and quantified ex-vacuo by LC-MS-MS and electrophoresis, respectively. Such effective yields, and the corresponding absolute cross sections derived from model analysis, should allow estimating beam damage and image quality in the visualization of thin biological films by LEE microscopy.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"276 ","pages":"Article 114197"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can low energy (1–20 eV) electron microscopy produce damage-free images of biological samples?\",\"authors\":\"Yi Zheng,&nbsp;Léon Sanche\",\"doi\":\"10.1016/j.ultramic.2025.114197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electron microscopy constitutes an efficient and well-established method to visualize biological material on the nanoscale. The image is usually produced by a high energy electron beam, which can damage the biological sample. To reduce image degradation, Neu et al. [Ultramicroscopy 222 (2021) 113,199] recently suggested the possibility of damage-free imaging of such samples at nm resolution using as a probe low energy electron (LEEs). The aims of the present article are to 1) present a simple and short description of LEE inelastic scattering and attachment in molecular solids in the 0–20 eV range, 2) show that principally due to the formation of transient anions (TAs) in biological material, by temporary LEE attachment to molecular sites, damage-free electron microscopy may be difficult to achieve and 3) suggest specimen conditions that reduce the damage produced by TAs to inflict minimum damage to biological samples in LEE microscopy. We provide examples of lesions induced by electrons of energies below 3 eV in short DNA strands composed of 16 base-pair oligonucleotides and on the 1–20 eV dependence of effective damage yields from LEE-bombarded plasmid DNA. The damaged samples were produced from 5-monolayer films lyophilized on tantalum substrates and transferred to ultra-high vacuum to be bombarded with LEEs. The products were identified and quantified ex-vacuo by LC-MS-MS and electrophoresis, respectively. Such effective yields, and the corresponding absolute cross sections derived from model analysis, should allow estimating beam damage and image quality in the visualization of thin biological films by LEE microscopy.</div></div>\",\"PeriodicalId\":23439,\"journal\":{\"name\":\"Ultramicroscopy\",\"volume\":\"276 \",\"pages\":\"Article 114197\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultramicroscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304399125000956\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399125000956","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

电子显微镜是一种在纳米尺度上观察生物材料的有效且成熟的方法。图像通常是由高能电子束产生的,这可能会破坏生物样品。为了减少图像退化,Neu等人[超微显微镜222(2021)113,199]最近提出了在纳米分辨率下使用低能量电子(LEEs)作为探针对这些样品进行无损伤成像的可能性。本文的目的是:1)在0-20 eV范围内对分子固体中LEE的非弹性散射和附着进行简单而简短的描述;2)表明,主要由于生物材料中瞬态阴离子(TAs)的形成,通过LEE对分子位点的临时附着,无损伤电子显微镜可能难以实现,并且3)建议在LEE显微镜中减少TAs产生的损伤以对生物样品造成最小损伤的样品条件。我们提供了能量低于3 eV的电子在由16个碱基对寡核苷酸组成的短DNA链中引起损伤的例子,以及1-20 eV依赖于lee轰击质粒DNA的有效损伤产量。损坏的样品是由在钽衬底上冻干的5层单层薄膜制成的,然后转移到超高真空中用LEEs轰击。分别用LC-MS-MS和电泳对产物进行鉴定和定量。这样的有效产率,以及从模型分析中得出的相应的绝对横截面,应该可以通过LEE显微镜来估计生物薄膜可视化中的光束损伤和图像质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Can low energy (1–20 eV) electron microscopy produce damage-free images of biological samples?
Electron microscopy constitutes an efficient and well-established method to visualize biological material on the nanoscale. The image is usually produced by a high energy electron beam, which can damage the biological sample. To reduce image degradation, Neu et al. [Ultramicroscopy 222 (2021) 113,199] recently suggested the possibility of damage-free imaging of such samples at nm resolution using as a probe low energy electron (LEEs). The aims of the present article are to 1) present a simple and short description of LEE inelastic scattering and attachment in molecular solids in the 0–20 eV range, 2) show that principally due to the formation of transient anions (TAs) in biological material, by temporary LEE attachment to molecular sites, damage-free electron microscopy may be difficult to achieve and 3) suggest specimen conditions that reduce the damage produced by TAs to inflict minimum damage to biological samples in LEE microscopy. We provide examples of lesions induced by electrons of energies below 3 eV in short DNA strands composed of 16 base-pair oligonucleotides and on the 1–20 eV dependence of effective damage yields from LEE-bombarded plasmid DNA. The damaged samples were produced from 5-monolayer films lyophilized on tantalum substrates and transferred to ultra-high vacuum to be bombarded with LEEs. The products were identified and quantified ex-vacuo by LC-MS-MS and electrophoresis, respectively. Such effective yields, and the corresponding absolute cross sections derived from model analysis, should allow estimating beam damage and image quality in the visualization of thin biological films by LEE microscopy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultramicroscopy
Ultramicroscopy 工程技术-显微镜技术
CiteScore
4.60
自引率
13.60%
发文量
117
审稿时长
5.3 months
期刊介绍: Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信