结合遥感工具和机器学习缩尺技术评估伏特河流域地下水储量的变化

IF 3.7 3区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Randal Djima Djessou , Xiaoyun Wan , Richard Fiifi Annan , Abdoul-Aziz Bio Sidi D. Bouko
{"title":"结合遥感工具和机器学习缩尺技术评估伏特河流域地下水储量的变化","authors":"Randal Djima Djessou ,&nbsp;Xiaoyun Wan ,&nbsp;Richard Fiifi Annan ,&nbsp;Abdoul-Aziz Bio Sidi D. Bouko","doi":"10.1016/j.ejrs.2025.06.001","DOIUrl":null,"url":null,"abstract":"<div><div>Water resources, vital for sustaining life and driving socio-economic development globally, face increasing pressure, necessitating accurate monitoring of storage variations. In this study, the water storage changes and its main drivers within the VRB are deeply investigated using remote sensing tools. The Gravity Recovery and Climate Experiment (GRACE) satellite derived terrestrial water storage anomalies (TWSA) is the only tool which vertically integrates all hydrological variables, and is suitable for groundwater storage anomalies (GWSA) changes investigation. The present investigation initially uses the Generalized Three-Corned Hat approach followed by a weighted average to merge four GRACE derived TWSA. Three machine learning techniques including XGBoost, LightGBM and Random Forest are applied to downscale TWSA at a spatial resolution of 0.1°. Results showed that (i) the merged TWSA depicts the lowest uncertainty with a median of 0.94 cm. (ii) The LightGBM model yielded the highest R<sup>2</sup> (0.99) and the lowest rmse (0.69 cm) in test phase. (iii) The LightGBM downscaled product indicated that GWSA increased (0.32 cm/month) over 2002–2022. (iv) The influence of precipitation and evapotranspiration on GWSA appeared to be rather harmless, while the spatial distribution of GWSA and subsurface runoff showed significant positive trend over the pixels connected with dams, reservoirs, and irrigated areas. This suggests that anthropogenic variable is the main driver of GWSA changes within the VRB. (v) Statistically significant positive trends are observed in downscaled GWSA time series and in-situ GWSA measurements.</div></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"28 3","pages":"Pages 383-394"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing groundwater storage variations in the Volta River Basin combining remote sensing tools and machine learning downscaling techniques\",\"authors\":\"Randal Djima Djessou ,&nbsp;Xiaoyun Wan ,&nbsp;Richard Fiifi Annan ,&nbsp;Abdoul-Aziz Bio Sidi D. Bouko\",\"doi\":\"10.1016/j.ejrs.2025.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Water resources, vital for sustaining life and driving socio-economic development globally, face increasing pressure, necessitating accurate monitoring of storage variations. In this study, the water storage changes and its main drivers within the VRB are deeply investigated using remote sensing tools. The Gravity Recovery and Climate Experiment (GRACE) satellite derived terrestrial water storage anomalies (TWSA) is the only tool which vertically integrates all hydrological variables, and is suitable for groundwater storage anomalies (GWSA) changes investigation. The present investigation initially uses the Generalized Three-Corned Hat approach followed by a weighted average to merge four GRACE derived TWSA. Three machine learning techniques including XGBoost, LightGBM and Random Forest are applied to downscale TWSA at a spatial resolution of 0.1°. Results showed that (i) the merged TWSA depicts the lowest uncertainty with a median of 0.94 cm. (ii) The LightGBM model yielded the highest R<sup>2</sup> (0.99) and the lowest rmse (0.69 cm) in test phase. (iii) The LightGBM downscaled product indicated that GWSA increased (0.32 cm/month) over 2002–2022. (iv) The influence of precipitation and evapotranspiration on GWSA appeared to be rather harmless, while the spatial distribution of GWSA and subsurface runoff showed significant positive trend over the pixels connected with dams, reservoirs, and irrigated areas. This suggests that anthropogenic variable is the main driver of GWSA changes within the VRB. (v) Statistically significant positive trends are observed in downscaled GWSA time series and in-situ GWSA measurements.</div></div>\",\"PeriodicalId\":48539,\"journal\":{\"name\":\"Egyptian Journal of Remote Sensing and Space Sciences\",\"volume\":\"28 3\",\"pages\":\"Pages 383-394\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Journal of Remote Sensing and Space Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110982325000304\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982325000304","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

对维持生命和推动全球社会经济发展至关重要的水资源面临越来越大的压力,因此有必要对储存变化进行准确监测。本研究利用遥感工具,深入研究了VRB内储水量变化及其主要驱动因素。重力恢复与气候实验(GRACE)卫星衍生的陆地蓄水异常(TWSA)是唯一垂直整合所有水文变量的工具,适用于地下水蓄水异常(GWSA)变化调查。本研究最初使用广义三角帽方法,然后加权平均合并四个GRACE衍生的TWSA。采用XGBoost、LightGBM和Random Forest三种机器学习技术对0.1°空间分辨率的TWSA进行了缩小。结果表明:(1)合并后的TWSA具有最低的不确定度,中值为0.94 cm。(ii) LightGBM模型在试验阶段R2最高(0.99),rmse最低(0.69 cm)。(iii) LightGBM缩小产品表明,2002-2022年GWSA增加了0.32 cm/月。(四)降水和蒸散发对GWSA的影响不大,而与坝、库、灌区相连的像元上,GWSA和地下径流的空间分布呈显著的正趋势。这表明,人为变量是VRB内GWSA变化的主要驱动因素。(v)在缩小的GWSA时间序列和现场GWSA测量中观察到统计上显著的正趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing groundwater storage variations in the Volta River Basin combining remote sensing tools and machine learning downscaling techniques
Water resources, vital for sustaining life and driving socio-economic development globally, face increasing pressure, necessitating accurate monitoring of storage variations. In this study, the water storage changes and its main drivers within the VRB are deeply investigated using remote sensing tools. The Gravity Recovery and Climate Experiment (GRACE) satellite derived terrestrial water storage anomalies (TWSA) is the only tool which vertically integrates all hydrological variables, and is suitable for groundwater storage anomalies (GWSA) changes investigation. The present investigation initially uses the Generalized Three-Corned Hat approach followed by a weighted average to merge four GRACE derived TWSA. Three machine learning techniques including XGBoost, LightGBM and Random Forest are applied to downscale TWSA at a spatial resolution of 0.1°. Results showed that (i) the merged TWSA depicts the lowest uncertainty with a median of 0.94 cm. (ii) The LightGBM model yielded the highest R2 (0.99) and the lowest rmse (0.69 cm) in test phase. (iii) The LightGBM downscaled product indicated that GWSA increased (0.32 cm/month) over 2002–2022. (iv) The influence of precipitation and evapotranspiration on GWSA appeared to be rather harmless, while the spatial distribution of GWSA and subsurface runoff showed significant positive trend over the pixels connected with dams, reservoirs, and irrigated areas. This suggests that anthropogenic variable is the main driver of GWSA changes within the VRB. (v) Statistically significant positive trends are observed in downscaled GWSA time series and in-situ GWSA measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
85
审稿时长
48 weeks
期刊介绍: The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信