基于稀疏单点注释的三维MRI颈动脉腔和管壁弱监督分割

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jonghun Kim , Inye Na , Junmo Kwon , Woo-Keun Seo , Hyunjin Park
{"title":"基于稀疏单点注释的三维MRI颈动脉腔和管壁弱监督分割","authors":"Jonghun Kim ,&nbsp;Inye Na ,&nbsp;Junmo Kwon ,&nbsp;Woo-Keun Seo ,&nbsp;Hyunjin Park","doi":"10.1016/j.cmpb.2025.108881","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and objective:</h3><div>Segmentation of the carotid artery is a crucial step in planning therapy for atherosclerosis. Manual annotation is a time-consuming and labor-intensive process, and there is a need to reduce this effort.</div></div><div><h3>Methods:</h3><div>We propose a weakly supervised segmentation method using only a few annotated axial slices, each with a single-point annotation from 3D magnetic resonance imaging for the lumen and wall of the carotid artery. The proposed method contains three loss functions designed to (1) locate the center point of the vessel, (2) constrain the range of the vessel radius using prior information implemented with spatial maps, and (3) encourage similar segmentation results in adjacent slices. Both the lumen (inner structure) and wall (outer structure) can be segmented by adjusting the range of plausible radii.</div></div><div><h3>Results:</h3><div>Experimental evaluations on the COSMOS2022 dataset show that our method achieved similar performance results (<span><math><msub><mrow><mtext>DSC</mtext></mrow><mrow><mi>l</mi><mi>u</mi></mrow></msub></math></span> 0.821 lumen, <span><math><msub><mrow><mtext>DSC</mtext></mrow><mrow><mi>w</mi><mi>a</mi></mrow></msub></math></span> 0.841 wall) to those of fully supervised methods with dense annotations (<span><math><msub><mrow><mtext>DSC</mtext></mrow><mrow><mi>l</mi><mi>u</mi></mrow></msub></math></span> 0.814-0.857, <span><math><msub><mrow><mtext>DSC</mtext></mrow><mrow><mi>w</mi><mi>a</mi></mrow></msub></math></span> 0.832-0.875). Similar trends were observed on an independent Harvard dataset.</div></div><div><h3>Conclusion:</h3><div>Our proposed method demonstrated effective segmentation of crucial arteries, internal carotid artery, external carotid artery, and common carotid artery in atherosclerosis. We anticipate that this efficient approach utilizing single-point annotation will contribute to the effective management of carotid atherosclerosis. Our code is available at <span><span>https://github.com/jongdory/CASCA</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"269 ","pages":"Article 108881"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weakly-supervised segmentation using sparse single point annotations for lumen and wall of carotid arteries in 3D MRI\",\"authors\":\"Jonghun Kim ,&nbsp;Inye Na ,&nbsp;Junmo Kwon ,&nbsp;Woo-Keun Seo ,&nbsp;Hyunjin Park\",\"doi\":\"10.1016/j.cmpb.2025.108881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and objective:</h3><div>Segmentation of the carotid artery is a crucial step in planning therapy for atherosclerosis. Manual annotation is a time-consuming and labor-intensive process, and there is a need to reduce this effort.</div></div><div><h3>Methods:</h3><div>We propose a weakly supervised segmentation method using only a few annotated axial slices, each with a single-point annotation from 3D magnetic resonance imaging for the lumen and wall of the carotid artery. The proposed method contains three loss functions designed to (1) locate the center point of the vessel, (2) constrain the range of the vessel radius using prior information implemented with spatial maps, and (3) encourage similar segmentation results in adjacent slices. Both the lumen (inner structure) and wall (outer structure) can be segmented by adjusting the range of plausible radii.</div></div><div><h3>Results:</h3><div>Experimental evaluations on the COSMOS2022 dataset show that our method achieved similar performance results (<span><math><msub><mrow><mtext>DSC</mtext></mrow><mrow><mi>l</mi><mi>u</mi></mrow></msub></math></span> 0.821 lumen, <span><math><msub><mrow><mtext>DSC</mtext></mrow><mrow><mi>w</mi><mi>a</mi></mrow></msub></math></span> 0.841 wall) to those of fully supervised methods with dense annotations (<span><math><msub><mrow><mtext>DSC</mtext></mrow><mrow><mi>l</mi><mi>u</mi></mrow></msub></math></span> 0.814-0.857, <span><math><msub><mrow><mtext>DSC</mtext></mrow><mrow><mi>w</mi><mi>a</mi></mrow></msub></math></span> 0.832-0.875). Similar trends were observed on an independent Harvard dataset.</div></div><div><h3>Conclusion:</h3><div>Our proposed method demonstrated effective segmentation of crucial arteries, internal carotid artery, external carotid artery, and common carotid artery in atherosclerosis. We anticipate that this efficient approach utilizing single-point annotation will contribute to the effective management of carotid atherosclerosis. Our code is available at <span><span>https://github.com/jongdory/CASCA</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":10624,\"journal\":{\"name\":\"Computer methods and programs in biomedicine\",\"volume\":\"269 \",\"pages\":\"Article 108881\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169260725002986\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725002986","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

背景与目的:颈动脉分割是动脉粥样硬化治疗计划的关键步骤。手动注释是一个耗时且费力的过程,需要减少这种工作量。方法:我们提出了一种弱监督分割方法,仅使用少量注释轴向切片,每个切片都有一个单点注释,这些注释来自颈动脉管腔和壁的3D磁共振成像。该方法包含三个损失函数,分别用于(1)定位血管中心点,(2)使用空间地图实现的先验信息约束血管半径范围,以及(3)鼓励相邻切片中相似的分割结果。管腔(内部结构)和壁(外部结构)都可以通过调整似是而非的半径范围来分割。结果:在COSMOS2022数据集上的实验评估表明,我们的方法与具有密集注释的完全监督方法(DSClu 0.814-0.857, DSCwa 0.832-0.875)取得了相似的性能结果(DSClu 0.821 lumen, DSCwa 0.841 wall)。哈佛大学的一个独立数据集也观察到了类似的趋势。结论:该方法对动脉粥样硬化的关键动脉、颈内动脉、颈外动脉和颈总动脉进行了有效的分割。我们预计这种利用单点注释的有效方法将有助于有效地管理颈动脉粥样硬化。我们的代码可在https://github.com/jongdory/CASCA上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weakly-supervised segmentation using sparse single point annotations for lumen and wall of carotid arteries in 3D MRI

Background and objective:

Segmentation of the carotid artery is a crucial step in planning therapy for atherosclerosis. Manual annotation is a time-consuming and labor-intensive process, and there is a need to reduce this effort.

Methods:

We propose a weakly supervised segmentation method using only a few annotated axial slices, each with a single-point annotation from 3D magnetic resonance imaging for the lumen and wall of the carotid artery. The proposed method contains three loss functions designed to (1) locate the center point of the vessel, (2) constrain the range of the vessel radius using prior information implemented with spatial maps, and (3) encourage similar segmentation results in adjacent slices. Both the lumen (inner structure) and wall (outer structure) can be segmented by adjusting the range of plausible radii.

Results:

Experimental evaluations on the COSMOS2022 dataset show that our method achieved similar performance results (DSClu 0.821 lumen, DSCwa 0.841 wall) to those of fully supervised methods with dense annotations (DSClu 0.814-0.857, DSCwa 0.832-0.875). Similar trends were observed on an independent Harvard dataset.

Conclusion:

Our proposed method demonstrated effective segmentation of crucial arteries, internal carotid artery, external carotid artery, and common carotid artery in atherosclerosis. We anticipate that this efficient approach utilizing single-point annotation will contribute to the effective management of carotid atherosclerosis. Our code is available at https://github.com/jongdory/CASCA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信