具有报警趋向性的三种空间捕食模型的全局有界性

IF 1.4 Q2 MATHEMATICS, APPLIED
Pengfei Luo , Yun Zhang , Lu Xu
{"title":"具有报警趋向性的三种空间捕食模型的全局有界性","authors":"Pengfei Luo ,&nbsp;Yun Zhang ,&nbsp;Lu Xu","doi":"10.1016/j.rinam.2025.100602","DOIUrl":null,"url":null,"abstract":"<div><div>The directional motivation of predator is influenced by the density of prey and its alarm call, this paper focuses on a three-species spatial intraguild predation model involving prey-taxis and alarm-taxis. By energy estimates and heat semigroup theory, we prove that this model possesses a bounded and global classical solution in <span><math><mi>N</mi></math></span>-dimensional space (<span><math><mrow><mi>N</mi><mo>≥</mo><mn>3</mn></mrow></math></span>) with Neumann boundary conditions.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"27 ","pages":"Article 100602"},"PeriodicalIF":1.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global boundedness of a three-species spatial intraguild predation model with alarm-taxis\",\"authors\":\"Pengfei Luo ,&nbsp;Yun Zhang ,&nbsp;Lu Xu\",\"doi\":\"10.1016/j.rinam.2025.100602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The directional motivation of predator is influenced by the density of prey and its alarm call, this paper focuses on a three-species spatial intraguild predation model involving prey-taxis and alarm-taxis. By energy estimates and heat semigroup theory, we prove that this model possesses a bounded and global classical solution in <span><math><mi>N</mi></math></span>-dimensional space (<span><math><mrow><mi>N</mi><mo>≥</mo><mn>3</mn></mrow></math></span>) with Neumann boundary conditions.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"27 \",\"pages\":\"Article 100602\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

捕食者的定向动机受猎物密度及其报警信号的影响,本文研究了一个包含趋向性和报警趋向性的三物种空间捕食模型。利用能量估计和热半群理论,证明了该模型在N维空间(N≥3)具有Neumann边界条件的有界全局经典解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global boundedness of a three-species spatial intraguild predation model with alarm-taxis
The directional motivation of predator is influenced by the density of prey and its alarm call, this paper focuses on a three-species spatial intraguild predation model involving prey-taxis and alarm-taxis. By energy estimates and heat semigroup theory, we prove that this model possesses a bounded and global classical solution in N-dimensional space (N3) with Neumann boundary conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信