学习裁判员评价,评价跳水运动中由粗到精的动作质量

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hong-Ming Qiu , Hong-Bo Zhang , Qing Lei , Jing-Hua Liu , Ji-Xiang Du
{"title":"学习裁判员评价,评价跳水运动中由粗到精的动作质量","authors":"Hong-Ming Qiu ,&nbsp;Hong-Bo Zhang ,&nbsp;Qing Lei ,&nbsp;Jing-Hua Liu ,&nbsp;Ji-Xiang Du","doi":"10.1016/j.neucom.2025.130664","DOIUrl":null,"url":null,"abstract":"<div><div>Intelligently assessing the quality of athletic performances in sports scenarios remains a fascinating challenge in computer vision. However, unraveling the subtle distinctions between two similar actions in videos and mapping those video representations to quality scores remain significant obstacles. To address these challenges, this work redefines the paradigm of quality score estimation from traditional relative quality score prediction to relative referee score prediction. To make this shift, a cross-feature fusion module rooted in Transformer-based video representation is introduced, to improve pairwise video feature learning in the realm of action quality assessment. Then, a novel contrastive action parsing decoder module generates mid-level representations to effectively connect visual features with detailed quality scores. Both modules utilize cross-attention mechanisms; the former refines the pairwise video features to represent the differences between video pairs, while the latter updates the input queries corresponding to each referee’s evaluation. Finally, to achieve precise quality score estimation, we introduce a meticulous coarse-to-fine decision process, integrating a score classifier and offset regressor. After validation on challenging diving datasets, including MTL-AQA, FineDiving, and TASD-2, the experimental results show that the proposed approach demonstrates effectiveness and feasibility when compared with state-of-the-art methods.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"648 ","pages":"Article 130664"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning referee evaluation and assessing action quality from coarse to fine in diving sport\",\"authors\":\"Hong-Ming Qiu ,&nbsp;Hong-Bo Zhang ,&nbsp;Qing Lei ,&nbsp;Jing-Hua Liu ,&nbsp;Ji-Xiang Du\",\"doi\":\"10.1016/j.neucom.2025.130664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Intelligently assessing the quality of athletic performances in sports scenarios remains a fascinating challenge in computer vision. However, unraveling the subtle distinctions between two similar actions in videos and mapping those video representations to quality scores remain significant obstacles. To address these challenges, this work redefines the paradigm of quality score estimation from traditional relative quality score prediction to relative referee score prediction. To make this shift, a cross-feature fusion module rooted in Transformer-based video representation is introduced, to improve pairwise video feature learning in the realm of action quality assessment. Then, a novel contrastive action parsing decoder module generates mid-level representations to effectively connect visual features with detailed quality scores. Both modules utilize cross-attention mechanisms; the former refines the pairwise video features to represent the differences between video pairs, while the latter updates the input queries corresponding to each referee’s evaluation. Finally, to achieve precise quality score estimation, we introduce a meticulous coarse-to-fine decision process, integrating a score classifier and offset regressor. After validation on challenging diving datasets, including MTL-AQA, FineDiving, and TASD-2, the experimental results show that the proposed approach demonstrates effectiveness and feasibility when compared with state-of-the-art methods.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"648 \",\"pages\":\"Article 130664\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225013360\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225013360","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在体育场景中智能地评估运动员的表现质量仍然是计算机视觉领域的一个有趣的挑战。然而,揭示视频中两个类似动作之间的细微差别,并将这些视频表示映射到质量分数,仍然是一个重大障碍。为了解决这些挑战,本工作重新定义了质量分数估计的范式,从传统的相对质量分数预测到相对裁判分数预测。为了实现这一转变,引入了基于transformer的视频表示的跨特征融合模块,以改进动作质量评估领域的成对视频特征学习。然后,一个新的对比动作解析解码器模块生成中级表示,有效地将视觉特征与详细的质量分数联系起来。两个模块都使用交叉注意机制;前者细化成对视频特征以表示视频对之间的差异,而后者则根据每个裁判的评价更新输入查询。最后,为了实现精确的质量分数估计,我们引入了精细的粗到精决策过程,集成了分数分类器和偏移回归器。在具有挑战性的潜水数据集(包括MTL-AQA、FineDiving和TASD-2)上进行验证后,实验结果表明,与最先进的方法相比,该方法具有有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning referee evaluation and assessing action quality from coarse to fine in diving sport
Intelligently assessing the quality of athletic performances in sports scenarios remains a fascinating challenge in computer vision. However, unraveling the subtle distinctions between two similar actions in videos and mapping those video representations to quality scores remain significant obstacles. To address these challenges, this work redefines the paradigm of quality score estimation from traditional relative quality score prediction to relative referee score prediction. To make this shift, a cross-feature fusion module rooted in Transformer-based video representation is introduced, to improve pairwise video feature learning in the realm of action quality assessment. Then, a novel contrastive action parsing decoder module generates mid-level representations to effectively connect visual features with detailed quality scores. Both modules utilize cross-attention mechanisms; the former refines the pairwise video features to represent the differences between video pairs, while the latter updates the input queries corresponding to each referee’s evaluation. Finally, to achieve precise quality score estimation, we introduce a meticulous coarse-to-fine decision process, integrating a score classifier and offset regressor. After validation on challenging diving datasets, including MTL-AQA, FineDiving, and TASD-2, the experimental results show that the proposed approach demonstrates effectiveness and feasibility when compared with state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信