Wenwu Zhao , Zizhao Ni , Caichun Yin , Yanxu Liu , Paulo Pereira
{"title":"综合地理学研究框架:复合驱动-系统演化-耦合机制-协同调节","authors":"Wenwu Zhao , Zizhao Ni , Caichun Yin , Yanxu Liu , Paulo Pereira","doi":"10.1016/j.geosus.2025.100321","DOIUrl":null,"url":null,"abstract":"<div><div>Amid ongoing global environmental change and the critical pursuit of sustainable development, human–environment systems are exhibiting increasingly complex dynamic evolutions and spatial relationships, underscoring an urgent need for innovative research frameworks. Integrated geography synthesizes physical geography, human geography, and geographic information science, providing key frameworks for understanding complex human–environment systems. This editorial proposes an emerging research framework for integrated geography—“Composite driving–System evolution–Coupling mechanism–Synergistic regulation (CSCS)”—based on key issues such as climate change, biodiversity loss, resource scarcity, and social–ecological interactions, which have been highlighted in both recent critical literature on human–environment systems and UN assessment reports. The framework starts with diverse composite driving forces, extends to the evolution of human–environment system structures, processes, and functions that these drivers induce, explores couplings within human–environment systems, and calls for regulation aimed at sustainable development in synergies. Major research frontiers include understanding the cascading “evolution–coupling” effects of shocks; measuring system resilience, thresholds, and safe and just operating space boundaries; clarifying linkage mechanisms across scales; and achieving synergistic outcomes for multi-objective sustainability. This framework will help promote the interdisciplinary integration and development of integrated geography, and provide geographical solutions for the global sustainable development agenda.</div></div>","PeriodicalId":52374,"journal":{"name":"Geography and Sustainability","volume":"6 3","pages":"Article 100321"},"PeriodicalIF":8.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research framework for integrated geography: Composite driving–system evolution–coupling mechanism–synergistic regulation\",\"authors\":\"Wenwu Zhao , Zizhao Ni , Caichun Yin , Yanxu Liu , Paulo Pereira\",\"doi\":\"10.1016/j.geosus.2025.100321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Amid ongoing global environmental change and the critical pursuit of sustainable development, human–environment systems are exhibiting increasingly complex dynamic evolutions and spatial relationships, underscoring an urgent need for innovative research frameworks. Integrated geography synthesizes physical geography, human geography, and geographic information science, providing key frameworks for understanding complex human–environment systems. This editorial proposes an emerging research framework for integrated geography—“Composite driving–System evolution–Coupling mechanism–Synergistic regulation (CSCS)”—based on key issues such as climate change, biodiversity loss, resource scarcity, and social–ecological interactions, which have been highlighted in both recent critical literature on human–environment systems and UN assessment reports. The framework starts with diverse composite driving forces, extends to the evolution of human–environment system structures, processes, and functions that these drivers induce, explores couplings within human–environment systems, and calls for regulation aimed at sustainable development in synergies. Major research frontiers include understanding the cascading “evolution–coupling” effects of shocks; measuring system resilience, thresholds, and safe and just operating space boundaries; clarifying linkage mechanisms across scales; and achieving synergistic outcomes for multi-objective sustainability. This framework will help promote the interdisciplinary integration and development of integrated geography, and provide geographical solutions for the global sustainable development agenda.</div></div>\",\"PeriodicalId\":52374,\"journal\":{\"name\":\"Geography and Sustainability\",\"volume\":\"6 3\",\"pages\":\"Article 100321\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geography and Sustainability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666683925000604\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geography and Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666683925000604","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Research framework for integrated geography: Composite driving–system evolution–coupling mechanism–synergistic regulation
Amid ongoing global environmental change and the critical pursuit of sustainable development, human–environment systems are exhibiting increasingly complex dynamic evolutions and spatial relationships, underscoring an urgent need for innovative research frameworks. Integrated geography synthesizes physical geography, human geography, and geographic information science, providing key frameworks for understanding complex human–environment systems. This editorial proposes an emerging research framework for integrated geography—“Composite driving–System evolution–Coupling mechanism–Synergistic regulation (CSCS)”—based on key issues such as climate change, biodiversity loss, resource scarcity, and social–ecological interactions, which have been highlighted in both recent critical literature on human–environment systems and UN assessment reports. The framework starts with diverse composite driving forces, extends to the evolution of human–environment system structures, processes, and functions that these drivers induce, explores couplings within human–environment systems, and calls for regulation aimed at sustainable development in synergies. Major research frontiers include understanding the cascading “evolution–coupling” effects of shocks; measuring system resilience, thresholds, and safe and just operating space boundaries; clarifying linkage mechanisms across scales; and achieving synergistic outcomes for multi-objective sustainability. This framework will help promote the interdisciplinary integration and development of integrated geography, and provide geographical solutions for the global sustainable development agenda.
期刊介绍:
Geography and Sustainability serves as a central hub for interdisciplinary research and education aimed at promoting sustainable development from an integrated geography perspective. By bridging natural and human sciences, the journal fosters broader analysis and innovative thinking on global and regional sustainability issues.
Geography and Sustainability welcomes original, high-quality research articles, review articles, short communications, technical comments, perspective articles and editorials on the following themes:
Geographical Processes: Interactions with and between water, soil, atmosphere and the biosphere and their spatio-temporal variations;
Human-Environmental Systems: Interactions between humans and the environment, resilience of socio-ecological systems and vulnerability;
Ecosystem Services and Human Wellbeing: Ecosystem structure, processes, services and their linkages with human wellbeing;
Sustainable Development: Theory, practice and critical challenges in sustainable development.