一个端到端的深度学习解决方案,用于城市环境中自动激光雷达树木检测

Julian R. Rice , G. Andrew Fricker , Jonathan Ventura
{"title":"一个端到端的深度学习解决方案,用于城市环境中自动激光雷达树木检测","authors":"Julian R. Rice ,&nbsp;G. Andrew Fricker ,&nbsp;Jonathan Ventura","doi":"10.1016/j.ophoto.2025.100092","DOIUrl":null,"url":null,"abstract":"<div><div>Cataloging and classifying trees in the urban environment is a crucial step in urban and environmental planning; however, manual collection and maintenance of this data is expensive and time-consuming. Although algorithmic approaches that rely on remote sensing data have been developed for tree detection in forests, they generally struggle in the more varied urban environment. This work proposes a novel end-to-end deep learning method for the detection of trees in the urban environment from remote sensing data. Specifically, we develop and train a novel PointNet-based neural network architecture to predict tree locations directly from LiDAR data augmented with multi-spectral imagery. We compare this model to a number of high-performing baselines on a large and varied dataset in the Southern California region, and find that our method outperforms all baselines in terms of tree detection ability (75.5% F-score) and positional accuracy (2.28 meter root mean squared error), while being highly efficient. We then analyze and compare the sources of errors, and how these reveal the strengths and weaknesses of each approach. Our results highlight the importance of fusing spectral and structural information for remote sensing tasks in complex urban environments.</div></div>","PeriodicalId":100730,"journal":{"name":"ISPRS Open Journal of Photogrammetry and Remote Sensing","volume":"17 ","pages":"Article 100092"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An end-to-end deep learning solution for automated LiDAR tree detection in the urban environment\",\"authors\":\"Julian R. Rice ,&nbsp;G. Andrew Fricker ,&nbsp;Jonathan Ventura\",\"doi\":\"10.1016/j.ophoto.2025.100092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cataloging and classifying trees in the urban environment is a crucial step in urban and environmental planning; however, manual collection and maintenance of this data is expensive and time-consuming. Although algorithmic approaches that rely on remote sensing data have been developed for tree detection in forests, they generally struggle in the more varied urban environment. This work proposes a novel end-to-end deep learning method for the detection of trees in the urban environment from remote sensing data. Specifically, we develop and train a novel PointNet-based neural network architecture to predict tree locations directly from LiDAR data augmented with multi-spectral imagery. We compare this model to a number of high-performing baselines on a large and varied dataset in the Southern California region, and find that our method outperforms all baselines in terms of tree detection ability (75.5% F-score) and positional accuracy (2.28 meter root mean squared error), while being highly efficient. We then analyze and compare the sources of errors, and how these reveal the strengths and weaknesses of each approach. Our results highlight the importance of fusing spectral and structural information for remote sensing tasks in complex urban environments.</div></div>\",\"PeriodicalId\":100730,\"journal\":{\"name\":\"ISPRS Open Journal of Photogrammetry and Remote Sensing\",\"volume\":\"17 \",\"pages\":\"Article 100092\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Open Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667393225000110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Open Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667393225000110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

城市环境树木的编目分类是城市环境规划的重要环节;然而,手工收集和维护这些数据既昂贵又耗时。虽然已经开发了依靠遥感数据的算法方法来探测森林中的树木,但它们通常难以适应变化较多的城市环境。这项工作提出了一种新的端到端深度学习方法,用于从遥感数据中检测城市环境中的树木。具体来说,我们开发并训练了一种新的基于pointnet的神经网络架构,可以直接从多光谱图像增强的激光雷达数据中预测树木的位置。我们将该模型与南加州地区大量不同数据集上的许多高性能基线进行了比较,发现我们的方法在树检测能力(75.5% F-score)和位置精度(2.28米均方根误差)方面优于所有基线,同时效率很高。然后,我们分析和比较错误的来源,以及它们如何揭示每种方法的优点和缺点。我们的研究结果强调了在复杂的城市环境中融合光谱和结构信息对遥感任务的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An end-to-end deep learning solution for automated LiDAR tree detection in the urban environment
Cataloging and classifying trees in the urban environment is a crucial step in urban and environmental planning; however, manual collection and maintenance of this data is expensive and time-consuming. Although algorithmic approaches that rely on remote sensing data have been developed for tree detection in forests, they generally struggle in the more varied urban environment. This work proposes a novel end-to-end deep learning method for the detection of trees in the urban environment from remote sensing data. Specifically, we develop and train a novel PointNet-based neural network architecture to predict tree locations directly from LiDAR data augmented with multi-spectral imagery. We compare this model to a number of high-performing baselines on a large and varied dataset in the Southern California region, and find that our method outperforms all baselines in terms of tree detection ability (75.5% F-score) and positional accuracy (2.28 meter root mean squared error), while being highly efficient. We then analyze and compare the sources of errors, and how these reveal the strengths and weaknesses of each approach. Our results highlight the importance of fusing spectral and structural information for remote sensing tasks in complex urban environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信