基于纯电动汽车暂态试验数据的电化学锂离子电池模型参数辨识全局敏感性分析

Ratnak Sok , Jin Kusaka
{"title":"基于纯电动汽车暂态试验数据的电化学锂离子电池模型参数辨识全局敏感性分析","authors":"Ratnak Sok ,&nbsp;Jin Kusaka","doi":"10.1016/j.fub.2025.100085","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate performance prediction of lithium-ion batteries at a cell level is crucial before the cell can be scaled to a pack for a system-level simulation of battery electric vehicles (BEV). The Doyle-Fuller-Newman (DFN) model is commonly used to predict the thermal-electrochemical performance of a Li-ion cell. The model has numerous parameter identifications, which is challenging when selecting important parameters for model optimizations and calibrations. The cell model parameters are not transferable due to different materials and properties. Related literature studies on parameter identifications only used measured cell response data from cell testing chambers, which did not consider the impact of real vehicle thermal management systems (VTMS). This work presents a thorough global sensitivity analysis to identify the most suitable NCA/Gr.-SiO<sub>x</sub> cell parameters before optimization. Firstly, the Elementary Effect (EE) method was utilized to evaluate (un)important 42 global parameters, of which 16 parameters can be reasonably neglected due to their low mean EE and standard deviations. Experiments of a battery electric SUV were performed under repeated Worldwide harmonized Light vehicles Test Cycle (WLTC) and combined Highway Fuel Economy Test Cycle (HWFET) with Federal Test Procedure (FTP75) driving. Measured transient performances (voltage, state-of-charge, and cell temperature) of a 75-kWh Li-ion battery pack (4416 cells) are scaled to a cell level for model validations. Then, the remaining 26 parameters are optimized for the cylindrical 21700 cell model to reasonably validate the dynamic cell performances. The sensitivity of the important DFN parameters is reported, providing a guideline for future parameter identifications in Li-ion pack model development with actual VTMS.</div></div>","PeriodicalId":100560,"journal":{"name":"Future Batteries","volume":"7 ","pages":"Article 100085"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global sensitivity analysis on parameter identifications of electrochemical Li-ion cell model using transient test data scaled from battery electric vehicle experiments\",\"authors\":\"Ratnak Sok ,&nbsp;Jin Kusaka\",\"doi\":\"10.1016/j.fub.2025.100085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate performance prediction of lithium-ion batteries at a cell level is crucial before the cell can be scaled to a pack for a system-level simulation of battery electric vehicles (BEV). The Doyle-Fuller-Newman (DFN) model is commonly used to predict the thermal-electrochemical performance of a Li-ion cell. The model has numerous parameter identifications, which is challenging when selecting important parameters for model optimizations and calibrations. The cell model parameters are not transferable due to different materials and properties. Related literature studies on parameter identifications only used measured cell response data from cell testing chambers, which did not consider the impact of real vehicle thermal management systems (VTMS). This work presents a thorough global sensitivity analysis to identify the most suitable NCA/Gr.-SiO<sub>x</sub> cell parameters before optimization. Firstly, the Elementary Effect (EE) method was utilized to evaluate (un)important 42 global parameters, of which 16 parameters can be reasonably neglected due to their low mean EE and standard deviations. Experiments of a battery electric SUV were performed under repeated Worldwide harmonized Light vehicles Test Cycle (WLTC) and combined Highway Fuel Economy Test Cycle (HWFET) with Federal Test Procedure (FTP75) driving. Measured transient performances (voltage, state-of-charge, and cell temperature) of a 75-kWh Li-ion battery pack (4416 cells) are scaled to a cell level for model validations. Then, the remaining 26 parameters are optimized for the cylindrical 21700 cell model to reasonably validate the dynamic cell performances. The sensitivity of the important DFN parameters is reported, providing a guideline for future parameter identifications in Li-ion pack model development with actual VTMS.</div></div>\",\"PeriodicalId\":100560,\"journal\":{\"name\":\"Future Batteries\",\"volume\":\"7 \",\"pages\":\"Article 100085\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Batteries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950264025000644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Batteries","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950264025000644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在将锂离子电池规模化用于纯电动汽车(BEV)的系统级模拟之前,对电池级锂离子电池的准确性能预测至关重要。Doyle-Fuller-Newman (DFN)模型通常用于预测锂离子电池的热电化学性能。该模型具有大量的参数识别,这在选择用于模型优化和校准的重要参数时具有挑战性。由于材料和性能的不同,电池模型参数不能转移。有关参数识别的相关文献研究仅使用了电池测试室测量的电池响应数据,而没有考虑实际车辆热管理系统(VTMS)的影响。这项工作提出了一个全面的全局敏感性分析,以确定最合适的NCA/Gr。-优化前siox电池参数。首先,利用基本效应(Elementary Effect, EE)方法对42个(不)重要的全局参数进行评价,其中16个参数的平均EE和标准差较低,可以合理忽略。在全球统一轻型车测试循环(WLTC)和公路燃油经济性测试循环(HWFET)与联邦测试程序(FTP75)相结合的情况下,对纯电动SUV进行了重复试验。测量75千瓦时锂离子电池组(4416个电池)的瞬态性能(电压,充电状态和电池温度)缩放到电池水平以进行模型验证。然后,对其余26个参数进行了优化,合理验证了圆柱21700电池模型的动态性能。本文报道了重要DFN参数的灵敏度,为未来使用实际VTMS开发锂离子电池组模型时的参数识别提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global sensitivity analysis on parameter identifications of electrochemical Li-ion cell model using transient test data scaled from battery electric vehicle experiments
Accurate performance prediction of lithium-ion batteries at a cell level is crucial before the cell can be scaled to a pack for a system-level simulation of battery electric vehicles (BEV). The Doyle-Fuller-Newman (DFN) model is commonly used to predict the thermal-electrochemical performance of a Li-ion cell. The model has numerous parameter identifications, which is challenging when selecting important parameters for model optimizations and calibrations. The cell model parameters are not transferable due to different materials and properties. Related literature studies on parameter identifications only used measured cell response data from cell testing chambers, which did not consider the impact of real vehicle thermal management systems (VTMS). This work presents a thorough global sensitivity analysis to identify the most suitable NCA/Gr.-SiOx cell parameters before optimization. Firstly, the Elementary Effect (EE) method was utilized to evaluate (un)important 42 global parameters, of which 16 parameters can be reasonably neglected due to their low mean EE and standard deviations. Experiments of a battery electric SUV were performed under repeated Worldwide harmonized Light vehicles Test Cycle (WLTC) and combined Highway Fuel Economy Test Cycle (HWFET) with Federal Test Procedure (FTP75) driving. Measured transient performances (voltage, state-of-charge, and cell temperature) of a 75-kWh Li-ion battery pack (4416 cells) are scaled to a cell level for model validations. Then, the remaining 26 parameters are optimized for the cylindrical 21700 cell model to reasonably validate the dynamic cell performances. The sensitivity of the important DFN parameters is reported, providing a guideline for future parameter identifications in Li-ion pack model development with actual VTMS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信