采用非定常涡格法和几何精确梁的气动弹性模拟自适应时间积分方法

IF 3.5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
David Märtins , Daniel Schuster , Christian Hente , Helge Jauken , Cristian Guillermo Gebhardt , Raimund Rolfes
{"title":"采用非定常涡格法和几何精确梁的气动弹性模拟自适应时间积分方法","authors":"David Märtins ,&nbsp;Daniel Schuster ,&nbsp;Christian Hente ,&nbsp;Helge Jauken ,&nbsp;Cristian Guillermo Gebhardt ,&nbsp;Raimund Rolfes","doi":"10.1016/j.jfluidstructs.2025.104360","DOIUrl":null,"url":null,"abstract":"<div><div>In the context of aeroelastic simulations, the unsteady vortex-lattice method, strongly coupled with geometrically exact beams, represents a good balance between computational cost and accuracy. However, the computation of aerodynamic loads can still be very time-consuming. To reduce the wall time of aeroelastic computations using the unsteady vortex-lattice method and geometrically exact beams, we strive for a technique to reduce the number of time steps necessary to simulate a given physical time. This paper presents an approach to calculate and adapt the time step size, which can significantly reduce the total computation time without compromising the accuracy of the result. In order to achieve this, the time step size is adapted following the evolution of relevant physical quantities describing the system (ring circulations, aerodynamic forces, potential energy, kinetic energy). Limits for the minimum and maximum time step sizes are introduced by monitoring the geometry of the wake elements. This straightforward approach can easily be adapted to other aeroelastic frameworks using the unsteady vortex-lattice method. The high potential for computational acceleration is demonstrated in the application example of a NACA wing, the benchmark of the Pazy wing, and the NREL 5 MW reference wind turbine.</div></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":"137 ","pages":"Article 104360"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An adaptive time integration approach for aeroelastic simulations using the unsteady vortex-lattice method and geometrically exact beams\",\"authors\":\"David Märtins ,&nbsp;Daniel Schuster ,&nbsp;Christian Hente ,&nbsp;Helge Jauken ,&nbsp;Cristian Guillermo Gebhardt ,&nbsp;Raimund Rolfes\",\"doi\":\"10.1016/j.jfluidstructs.2025.104360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the context of aeroelastic simulations, the unsteady vortex-lattice method, strongly coupled with geometrically exact beams, represents a good balance between computational cost and accuracy. However, the computation of aerodynamic loads can still be very time-consuming. To reduce the wall time of aeroelastic computations using the unsteady vortex-lattice method and geometrically exact beams, we strive for a technique to reduce the number of time steps necessary to simulate a given physical time. This paper presents an approach to calculate and adapt the time step size, which can significantly reduce the total computation time without compromising the accuracy of the result. In order to achieve this, the time step size is adapted following the evolution of relevant physical quantities describing the system (ring circulations, aerodynamic forces, potential energy, kinetic energy). Limits for the minimum and maximum time step sizes are introduced by monitoring the geometry of the wake elements. This straightforward approach can easily be adapted to other aeroelastic frameworks using the unsteady vortex-lattice method. The high potential for computational acceleration is demonstrated in the application example of a NACA wing, the benchmark of the Pazy wing, and the NREL 5 MW reference wind turbine.</div></div>\",\"PeriodicalId\":54834,\"journal\":{\"name\":\"Journal of Fluids and Structures\",\"volume\":\"137 \",\"pages\":\"Article 104360\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0889974625000957\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974625000957","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在气动弹性模拟的背景下,非定常涡点阵法与几何精确梁强耦合,在计算成本和精度之间取得了很好的平衡。然而,气动载荷的计算仍然非常耗时。为了减少使用非定常涡晶格法和几何精确梁的气动弹性计算的壁时间,我们努力寻找一种技术来减少模拟给定物理时间所需的时间步长。本文提出了一种计算和调整时间步长的方法,可以在不影响结果准确性的情况下显著减少总计算时间。为了实现这一点,时间步长是根据描述系统的相关物理量(环循环、气动力、势能、动能)的演变而调整的。通过监测尾迹元件的几何形状,引入了最小和最大时间步长限制。这种简单的方法可以很容易地应用于其他气动弹性框架的非定常涡点阵方法。在NACA机翼、Pazy机翼的基准和NREL 5mw参考风力涡轮机的应用实例中,证明了计算加速的高潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive time integration approach for aeroelastic simulations using the unsteady vortex-lattice method and geometrically exact beams
In the context of aeroelastic simulations, the unsteady vortex-lattice method, strongly coupled with geometrically exact beams, represents a good balance between computational cost and accuracy. However, the computation of aerodynamic loads can still be very time-consuming. To reduce the wall time of aeroelastic computations using the unsteady vortex-lattice method and geometrically exact beams, we strive for a technique to reduce the number of time steps necessary to simulate a given physical time. This paper presents an approach to calculate and adapt the time step size, which can significantly reduce the total computation time without compromising the accuracy of the result. In order to achieve this, the time step size is adapted following the evolution of relevant physical quantities describing the system (ring circulations, aerodynamic forces, potential energy, kinetic energy). Limits for the minimum and maximum time step sizes are introduced by monitoring the geometry of the wake elements. This straightforward approach can easily be adapted to other aeroelastic frameworks using the unsteady vortex-lattice method. The high potential for computational acceleration is demonstrated in the application example of a NACA wing, the benchmark of the Pazy wing, and the NREL 5 MW reference wind turbine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fluids and Structures
Journal of Fluids and Structures 工程技术-工程:机械
CiteScore
6.90
自引率
8.30%
发文量
173
审稿时长
65 days
期刊介绍: The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved. The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信