Danae K. R. Bardaji, Nagela B. S. Silva, Renata R. Miranda, Carlos Henrique G. Martins, Michael A. Savka and André O. Hudson*,
{"title":"释放巴西植物萜烯对抗抗菌素耐药性的潜力","authors":"Danae K. R. Bardaji, Nagela B. S. Silva, Renata R. Miranda, Carlos Henrique G. Martins, Michael A. Savka and André O. Hudson*, ","doi":"10.1021/acsbiomedchemau.5c0006910.1021/acsbiomedchemau.5c00069","DOIUrl":null,"url":null,"abstract":"<p >The group of bacteria known as ESKAPE: <i>Enterococcus faecium</i>, <i>Staphylococcus aureus</i>, <i>Klebsiella pneumoniae</i>, <i>Acinetobacter baumannii</i>, <i>Pseudomonas aeruginosa</i>, and <i>Enterobacter</i> spp. are well recognized for their high virulence and pathogenicity, employing diverse modalities and mechanisms to resist multiple classes of clinically relevant antibiotics. Their capacity to evade treatment presents a major public health challenge, highlighting the urgent need for novel antibiotics to address the growing resistance crisis. The plant kingdom presents a promising avenue to this fight. Plants are naturally endowed with the genomic and proteomic machinery to synthesize a wide arsenal of secondary metabolites, including terpenes and terpenoids, which have demonstrated potent antimicrobial properties both as standalone agents and as synergists or enhancers of existing antibiotics. These plant-derived compounds often operate through mechanisms distinct from those of conventional antibiotics, offering a potentially effective solution against antibiotic-resistant bacteria. Brazil, home to some of the richest biodiversity on the planet, boasts 46,000 recorded plant species, with 250 new species identified annually. This review delves into the methods of preparing and isolating terpenes and terpenoids from plants, explores the techniques used to assess their antibacterial activity, and highlights ongoing research using Brazilian plants to target ESKAPE pathogens. This compilation of knowledge aims to establish a pipeline for evaluating the antibacterial potential of terpenes and terpenoids, contributing to efforts addressing the growing threat of antimicrobial resistance.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"5 3","pages":"365–378 365–378"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.5c00069","citationCount":"0","resultStr":"{\"title\":\"Unlocking the Potential of Brazilian Plant Terpenes to Combat Antimicrobial Resistance\",\"authors\":\"Danae K. R. Bardaji, Nagela B. S. Silva, Renata R. Miranda, Carlos Henrique G. Martins, Michael A. Savka and André O. Hudson*, \",\"doi\":\"10.1021/acsbiomedchemau.5c0006910.1021/acsbiomedchemau.5c00069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The group of bacteria known as ESKAPE: <i>Enterococcus faecium</i>, <i>Staphylococcus aureus</i>, <i>Klebsiella pneumoniae</i>, <i>Acinetobacter baumannii</i>, <i>Pseudomonas aeruginosa</i>, and <i>Enterobacter</i> spp. are well recognized for their high virulence and pathogenicity, employing diverse modalities and mechanisms to resist multiple classes of clinically relevant antibiotics. Their capacity to evade treatment presents a major public health challenge, highlighting the urgent need for novel antibiotics to address the growing resistance crisis. The plant kingdom presents a promising avenue to this fight. Plants are naturally endowed with the genomic and proteomic machinery to synthesize a wide arsenal of secondary metabolites, including terpenes and terpenoids, which have demonstrated potent antimicrobial properties both as standalone agents and as synergists or enhancers of existing antibiotics. These plant-derived compounds often operate through mechanisms distinct from those of conventional antibiotics, offering a potentially effective solution against antibiotic-resistant bacteria. Brazil, home to some of the richest biodiversity on the planet, boasts 46,000 recorded plant species, with 250 new species identified annually. This review delves into the methods of preparing and isolating terpenes and terpenoids from plants, explores the techniques used to assess their antibacterial activity, and highlights ongoing research using Brazilian plants to target ESKAPE pathogens. This compilation of knowledge aims to establish a pipeline for evaluating the antibacterial potential of terpenes and terpenoids, contributing to efforts addressing the growing threat of antimicrobial resistance.</p>\",\"PeriodicalId\":29802,\"journal\":{\"name\":\"ACS Bio & Med Chem Au\",\"volume\":\"5 3\",\"pages\":\"365–378 365–378\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.5c00069\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Bio & Med Chem Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.5c00069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Bio & Med Chem Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.5c00069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Unlocking the Potential of Brazilian Plant Terpenes to Combat Antimicrobial Resistance
The group of bacteria known as ESKAPE: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. are well recognized for their high virulence and pathogenicity, employing diverse modalities and mechanisms to resist multiple classes of clinically relevant antibiotics. Their capacity to evade treatment presents a major public health challenge, highlighting the urgent need for novel antibiotics to address the growing resistance crisis. The plant kingdom presents a promising avenue to this fight. Plants are naturally endowed with the genomic and proteomic machinery to synthesize a wide arsenal of secondary metabolites, including terpenes and terpenoids, which have demonstrated potent antimicrobial properties both as standalone agents and as synergists or enhancers of existing antibiotics. These plant-derived compounds often operate through mechanisms distinct from those of conventional antibiotics, offering a potentially effective solution against antibiotic-resistant bacteria. Brazil, home to some of the richest biodiversity on the planet, boasts 46,000 recorded plant species, with 250 new species identified annually. This review delves into the methods of preparing and isolating terpenes and terpenoids from plants, explores the techniques used to assess their antibacterial activity, and highlights ongoing research using Brazilian plants to target ESKAPE pathogens. This compilation of knowledge aims to establish a pipeline for evaluating the antibacterial potential of terpenes and terpenoids, contributing to efforts addressing the growing threat of antimicrobial resistance.
期刊介绍:
ACS Bio & Med Chem Au is a broad scope open access journal which publishes short letters comprehensive articles reviews and perspectives in all aspects of biological and medicinal chemistry. Studies providing fundamental insights or describing novel syntheses as well as clinical or other applications-based work are welcomed.This broad scope includes experimental and theoretical studies on the chemical physical mechanistic and/or structural basis of biological or cell function in all domains of life. It encompasses the fields of chemical biology synthetic biology disease biology cell biology agriculture and food natural products research nucleic acid biology neuroscience structural biology and biophysics.The journal publishes studies that pertain to a broad range of medicinal chemistry including compound design and optimization biological evaluation molecular mechanistic understanding of drug delivery and drug delivery systems imaging agents and pharmacology and translational science of both small and large bioactive molecules. Novel computational cheminformatics and structural studies for the identification (or structure-activity relationship analysis) of bioactive molecules ligands and their targets are also welcome. The journal will consider computational studies applying established computational methods but only in combination with novel and original experimental data (e.g. in cases where new compounds have been designed and tested).Also included in the scope of the journal are articles relating to infectious diseases research on pathogens host-pathogen interactions therapeutics diagnostics vaccines drug-delivery systems and other biomedical technology development pertaining to infectious diseases.