阿尔茨海默病:靶向Sirtuins、Caspases和GSK-3的分子机制和治疗意义综述

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kalpana Pandya, Krishnashish Roul, Avanish Tripathi, Sateesh Belemkar, Anshuman Sinha, Meryem Erol and Devendra Kumar*, 
{"title":"阿尔茨海默病:靶向Sirtuins、Caspases和GSK-3的分子机制和治疗意义综述","authors":"Kalpana Pandya,&nbsp;Krishnashish Roul,&nbsp;Avanish Tripathi,&nbsp;Sateesh Belemkar,&nbsp;Anshuman Sinha,&nbsp;Meryem Erol and Devendra Kumar*,&nbsp;","doi":"10.1021/acschemneuro.5c0020710.1021/acschemneuro.5c00207","DOIUrl":null,"url":null,"abstract":"<p >Alzheimer’s disease (AD) is a neurodegenerative disease with a significant impact on global public health. The primary hallmarks of the disease included amyloid-beta peptide (Aβ) deposition, neurofibrillary tangles (NFT), and synaptic loss. Sirtuins, a group of NAD<sup>+</sup>-dependent deacetylase enzymes, are key regulators of AD pathogenesis. SIRT1, a member of sirtuins, has been identified to possess neuroprotective properties. Thus, its promising enhancers are included. Further, SIRT2 promising inhibitors are reviewed for therapeutic efficacy. The extrinsic and intrinsic apoptotic pathways of caspases are mediated by CD95 and DNA damage. The promising inhibitors Q-VD-OPh and minocycline are found to be specific for caspase-7 and caspase-3, respectively. Primarily, glycogen synthase kinase-3β (GSK-3β) is found to be involved in the generation of phosphorylated tau. The promising GSK-3 inhibitor included the COB-187 (IC<sub>50</sub> = 370 nM) and maleimide-derivative (compound 33, IC<sub>50</sub> = 0.09 μM). This review highlights the molecular mechanisms of sirtuin, caspase, and GSK-3 in the pathophysiology of AD. Further, promising modulators specific to these targets are described.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"16 12","pages":"2178–2195 2178–2195"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alzheimer’s Disease: A Review of Molecular Mechanisms and Therapeutic Implications by Targeting Sirtuins, Caspases, and GSK-3\",\"authors\":\"Kalpana Pandya,&nbsp;Krishnashish Roul,&nbsp;Avanish Tripathi,&nbsp;Sateesh Belemkar,&nbsp;Anshuman Sinha,&nbsp;Meryem Erol and Devendra Kumar*,&nbsp;\",\"doi\":\"10.1021/acschemneuro.5c0020710.1021/acschemneuro.5c00207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Alzheimer’s disease (AD) is a neurodegenerative disease with a significant impact on global public health. The primary hallmarks of the disease included amyloid-beta peptide (Aβ) deposition, neurofibrillary tangles (NFT), and synaptic loss. Sirtuins, a group of NAD<sup>+</sup>-dependent deacetylase enzymes, are key regulators of AD pathogenesis. SIRT1, a member of sirtuins, has been identified to possess neuroprotective properties. Thus, its promising enhancers are included. Further, SIRT2 promising inhibitors are reviewed for therapeutic efficacy. The extrinsic and intrinsic apoptotic pathways of caspases are mediated by CD95 and DNA damage. The promising inhibitors Q-VD-OPh and minocycline are found to be specific for caspase-7 and caspase-3, respectively. Primarily, glycogen synthase kinase-3β (GSK-3β) is found to be involved in the generation of phosphorylated tau. The promising GSK-3 inhibitor included the COB-187 (IC<sub>50</sub> = 370 nM) and maleimide-derivative (compound 33, IC<sub>50</sub> = 0.09 μM). This review highlights the molecular mechanisms of sirtuin, caspase, and GSK-3 in the pathophysiology of AD. Further, promising modulators specific to these targets are described.</p>\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\"16 12\",\"pages\":\"2178–2195 2178–2195\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acschemneuro.5c00207\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acschemneuro.5c00207","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)是一种严重影响全球公共卫生的神经退行性疾病。该疾病的主要特征包括淀粉样肽(Aβ)沉积、神经原纤维缠结(NFT)和突触丧失。Sirtuins是一组依赖NAD+的去乙酰化酶,是AD发病的关键调节因子。SIRT1是sirtuins的一员,已被确定具有神经保护特性。因此,包括其有前途的增强剂。此外,对SIRT2抑制剂的治疗效果进行了综述。CD95和DNA损伤介导了半胱天冬酶的外在和内在凋亡途径。有希望的抑制剂Q-VD-OPh和米诺环素分别对caspase-7和caspase-3具有特异性。首先,糖原合成酶激酶-3β (GSK-3β)被发现参与磷酸化tau蛋白的产生。有前景的GSK-3抑制剂包括COB-187 (IC50 = 370 nM)和马来酰亚胺衍生物(化合物33,IC50 = 0.09 μM)。本文综述了sirtuin、caspase和GSK-3在AD病理生理中的分子机制。此外,描述了针对这些目标的有希望的调制器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alzheimer’s Disease: A Review of Molecular Mechanisms and Therapeutic Implications by Targeting Sirtuins, Caspases, and GSK-3

Alzheimer’s disease (AD) is a neurodegenerative disease with a significant impact on global public health. The primary hallmarks of the disease included amyloid-beta peptide (Aβ) deposition, neurofibrillary tangles (NFT), and synaptic loss. Sirtuins, a group of NAD+-dependent deacetylase enzymes, are key regulators of AD pathogenesis. SIRT1, a member of sirtuins, has been identified to possess neuroprotective properties. Thus, its promising enhancers are included. Further, SIRT2 promising inhibitors are reviewed for therapeutic efficacy. The extrinsic and intrinsic apoptotic pathways of caspases are mediated by CD95 and DNA damage. The promising inhibitors Q-VD-OPh and minocycline are found to be specific for caspase-7 and caspase-3, respectively. Primarily, glycogen synthase kinase-3β (GSK-3β) is found to be involved in the generation of phosphorylated tau. The promising GSK-3 inhibitor included the COB-187 (IC50 = 370 nM) and maleimide-derivative (compound 33, IC50 = 0.09 μM). This review highlights the molecular mechanisms of sirtuin, caspase, and GSK-3 in the pathophysiology of AD. Further, promising modulators specific to these targets are described.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信