Marc-Antoine Turcotte, and , Jean-Pierre Perreault*,
{"title":"富含鸟嘌呤反义寡核苷酸的RNA g -四重体重编程抑制单胺氧化酶B的翻译","authors":"Marc-Antoine Turcotte, and , Jean-Pierre Perreault*, ","doi":"10.1021/acsbiomedchemau.5c0000410.1021/acsbiomedchemau.5c00004","DOIUrl":null,"url":null,"abstract":"<p >The human transcriptome contains secondary RNA structures like RNA G-quadruplexes (rG4s) which regulate biological processes such as translation by ribosome stalling. Canonical rG4s, which are stabilized by both Hoogsteen hydrogen bonds and potassium ions, are known to hinder translation in the 5′ untranslated region (5′UTR) of mRNAs. In neurodegenerative diseases, including Parkinson’s disease (PD), rG4s have been shown to influence protein synthesis. However, the impact of rG4s in nonmutated therapeutic targets like monoamine oxidase B (MAOB), an enzyme involved in dopamine metabolism, remains unexplored. In this study, an rG4 located in the MAOB mRNA’s 5′UTR was identified, and ways to either stabilize or reprogram this rG4 were explored. The translation inhibitory role of the rG4 was demonstrated both <i>in vitro</i> and <i>in cellulo</i> and was shown to be further accentuated in the presence of the PhenDC3 ligand. As an alternative to ligands, which cannot specifically stabilize only one G4, the MOAB rG4 was reprogrammed with G-rich antisense oligonucleotides (G-ASOs) from a two-quartets to three-quartets G4. The G-ASOs, either unmodified DNA or 2′OMe, were shown to both induce a new rG4 folding through intermolecular interactions and to specifically reduce the translation of MAOB both <i>in vitro</i> and <i>in cellulo</i>. These findings propose a targeted approach with which to modulate rG4 structures for therapeutics, suggesting that rG4 folding, when stabilized by G-ASOs, could regulate protein synthesis and even potentially alleviate PD symptoms by reducing MAOB activity. This approach opens new avenues as it could be used to reduce the expression of many therapeutic protein targets.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"5 3","pages":"403–414 403–414"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.5c00004","citationCount":"0","resultStr":"{\"title\":\"RNA G-Quadruplex Reprogramming with Guanine-Rich Antisense Oligonucleotides Inhibits Monoamine Oxidase B’s Translation\",\"authors\":\"Marc-Antoine Turcotte, and , Jean-Pierre Perreault*, \",\"doi\":\"10.1021/acsbiomedchemau.5c0000410.1021/acsbiomedchemau.5c00004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The human transcriptome contains secondary RNA structures like RNA G-quadruplexes (rG4s) which regulate biological processes such as translation by ribosome stalling. Canonical rG4s, which are stabilized by both Hoogsteen hydrogen bonds and potassium ions, are known to hinder translation in the 5′ untranslated region (5′UTR) of mRNAs. In neurodegenerative diseases, including Parkinson’s disease (PD), rG4s have been shown to influence protein synthesis. However, the impact of rG4s in nonmutated therapeutic targets like monoamine oxidase B (MAOB), an enzyme involved in dopamine metabolism, remains unexplored. In this study, an rG4 located in the MAOB mRNA’s 5′UTR was identified, and ways to either stabilize or reprogram this rG4 were explored. The translation inhibitory role of the rG4 was demonstrated both <i>in vitro</i> and <i>in cellulo</i> and was shown to be further accentuated in the presence of the PhenDC3 ligand. As an alternative to ligands, which cannot specifically stabilize only one G4, the MOAB rG4 was reprogrammed with G-rich antisense oligonucleotides (G-ASOs) from a two-quartets to three-quartets G4. The G-ASOs, either unmodified DNA or 2′OMe, were shown to both induce a new rG4 folding through intermolecular interactions and to specifically reduce the translation of MAOB both <i>in vitro</i> and <i>in cellulo</i>. These findings propose a targeted approach with which to modulate rG4 structures for therapeutics, suggesting that rG4 folding, when stabilized by G-ASOs, could regulate protein synthesis and even potentially alleviate PD symptoms by reducing MAOB activity. This approach opens new avenues as it could be used to reduce the expression of many therapeutic protein targets.</p>\",\"PeriodicalId\":29802,\"journal\":{\"name\":\"ACS Bio & Med Chem Au\",\"volume\":\"5 3\",\"pages\":\"403–414 403–414\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.5c00004\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Bio & Med Chem Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.5c00004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Bio & Med Chem Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.5c00004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The human transcriptome contains secondary RNA structures like RNA G-quadruplexes (rG4s) which regulate biological processes such as translation by ribosome stalling. Canonical rG4s, which are stabilized by both Hoogsteen hydrogen bonds and potassium ions, are known to hinder translation in the 5′ untranslated region (5′UTR) of mRNAs. In neurodegenerative diseases, including Parkinson’s disease (PD), rG4s have been shown to influence protein synthesis. However, the impact of rG4s in nonmutated therapeutic targets like monoamine oxidase B (MAOB), an enzyme involved in dopamine metabolism, remains unexplored. In this study, an rG4 located in the MAOB mRNA’s 5′UTR was identified, and ways to either stabilize or reprogram this rG4 were explored. The translation inhibitory role of the rG4 was demonstrated both in vitro and in cellulo and was shown to be further accentuated in the presence of the PhenDC3 ligand. As an alternative to ligands, which cannot specifically stabilize only one G4, the MOAB rG4 was reprogrammed with G-rich antisense oligonucleotides (G-ASOs) from a two-quartets to three-quartets G4. The G-ASOs, either unmodified DNA or 2′OMe, were shown to both induce a new rG4 folding through intermolecular interactions and to specifically reduce the translation of MAOB both in vitro and in cellulo. These findings propose a targeted approach with which to modulate rG4 structures for therapeutics, suggesting that rG4 folding, when stabilized by G-ASOs, could regulate protein synthesis and even potentially alleviate PD symptoms by reducing MAOB activity. This approach opens new avenues as it could be used to reduce the expression of many therapeutic protein targets.
期刊介绍:
ACS Bio & Med Chem Au is a broad scope open access journal which publishes short letters comprehensive articles reviews and perspectives in all aspects of biological and medicinal chemistry. Studies providing fundamental insights or describing novel syntheses as well as clinical or other applications-based work are welcomed.This broad scope includes experimental and theoretical studies on the chemical physical mechanistic and/or structural basis of biological or cell function in all domains of life. It encompasses the fields of chemical biology synthetic biology disease biology cell biology agriculture and food natural products research nucleic acid biology neuroscience structural biology and biophysics.The journal publishes studies that pertain to a broad range of medicinal chemistry including compound design and optimization biological evaluation molecular mechanistic understanding of drug delivery and drug delivery systems imaging agents and pharmacology and translational science of both small and large bioactive molecules. Novel computational cheminformatics and structural studies for the identification (or structure-activity relationship analysis) of bioactive molecules ligands and their targets are also welcome. The journal will consider computational studies applying established computational methods but only in combination with novel and original experimental data (e.g. in cases where new compounds have been designed and tested).Also included in the scope of the journal are articles relating to infectious diseases research on pathogens host-pathogen interactions therapeutics diagnostics vaccines drug-delivery systems and other biomedical technology development pertaining to infectious diseases.