具有控制变量的最佳分位数的自适应顺序选择程序

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Shing Chih Tsai , Guangxin Jiang
{"title":"具有控制变量的最佳分位数的自适应顺序选择程序","authors":"Shing Chih Tsai ,&nbsp;Guangxin Jiang","doi":"10.1016/j.ejor.2025.05.049","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces adaptive sequential selection procedures leveraging control variate quantile estimators for efficient quantile-based ranking and selection in simulation studies. Two variations are proposed: one simplifies estimation using binary control variates, and the other employs a discrete approximation to derive a post-stratified control variate quantile estimator. Theoretical analysis establishes the asymptotic validity and efficiency of these methods, including a novel central limit theorem for the post-stratified estimator. Numerical experiments on normal distributions and a basic queueing problem demonstrate the superior performance and adaptability of the proposed procedures. This work advances the integration of variance reduction techniques into quantile-based ranking-and-selection procedures, providing a robust framework for practical applications.</div></div>","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"326 3","pages":"Pages 515-529"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive sequential selection procedures for optimal quantile with control variates\",\"authors\":\"Shing Chih Tsai ,&nbsp;Guangxin Jiang\",\"doi\":\"10.1016/j.ejor.2025.05.049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces adaptive sequential selection procedures leveraging control variate quantile estimators for efficient quantile-based ranking and selection in simulation studies. Two variations are proposed: one simplifies estimation using binary control variates, and the other employs a discrete approximation to derive a post-stratified control variate quantile estimator. Theoretical analysis establishes the asymptotic validity and efficiency of these methods, including a novel central limit theorem for the post-stratified estimator. Numerical experiments on normal distributions and a basic queueing problem demonstrate the superior performance and adaptability of the proposed procedures. This work advances the integration of variance reduction techniques into quantile-based ranking-and-selection procedures, providing a robust framework for practical applications.</div></div>\",\"PeriodicalId\":55161,\"journal\":{\"name\":\"European Journal of Operational Research\",\"volume\":\"326 3\",\"pages\":\"Pages 515-529\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Operational Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377221725004473\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377221725004473","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了自适应序列选择程序,利用控制变量分位数估计器在仿真研究中进行有效的基于分位数的排序和选择。提出了两种变化:一种是使用二元控制变量简化估计,另一种是使用离散逼近来推导后分层控制变量分位数估计。理论分析证明了这些方法的渐近有效性和有效性,包括一个新的后分层估计量的中心极限定理。在正态分布和一个基本排队问题上的数值实验表明,所提方法具有良好的性能和适应性。这项工作将方差减少技术整合到基于分位数的排序和选择程序中,为实际应用提供了一个强大的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive sequential selection procedures for optimal quantile with control variates
This paper introduces adaptive sequential selection procedures leveraging control variate quantile estimators for efficient quantile-based ranking and selection in simulation studies. Two variations are proposed: one simplifies estimation using binary control variates, and the other employs a discrete approximation to derive a post-stratified control variate quantile estimator. Theoretical analysis establishes the asymptotic validity and efficiency of these methods, including a novel central limit theorem for the post-stratified estimator. Numerical experiments on normal distributions and a basic queueing problem demonstrate the superior performance and adaptability of the proposed procedures. This work advances the integration of variance reduction techniques into quantile-based ranking-and-selection procedures, providing a robust framework for practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信