Chloé Fustinoni, Xiang Liu, Zhi Chen, Ryan Cawood, Weimin Valenti, Maria I Patrício, Weiheng Su
{"title":"自沉默腺病毒使重组腺相关病毒载体的精确感染滴定成为可能。","authors":"Chloé Fustinoni, Xiang Liu, Zhi Chen, Ryan Cawood, Weimin Valenti, Maria I Patrício, Weiheng Su","doi":"10.1016/j.omtm.2025.101492","DOIUrl":null,"url":null,"abstract":"<p><p>Robust and accurate quantification of recombinant adeno-associated virus (rAAV) vectors' infectivity is essential for pre-clinical and clinical development of AAV gene therapy programs. The industry standard method for rAAV titration is the 50% tissue culture infectious dose (TCID50) assay using HeLa-based cell lines that stably encode the <i>rep</i> and <i>cap</i> genes from AAV serotype 2. Co-infection with wild-type (WT) adenoviruses provides the helper functions for expression of these genes, and the use of quantitative PCR (qPCR)/droplet digital PCR (ddPCR) serves as the endpoint method for the detection of infectious events. However, TCID50 assays using these HeLa-based <i>rep cap trans</i>-complementing cell lines have traditionally been regarded as challenging due to high variability, stability of the integrated genes, and safety concerns associated with the use of WT helper viruses. Here we developed a novel method for infectious titration of rAAV using our vector \"tetracycline-enabled self-silencing adenovirus\" (TESSA); we engineered it to deliver and express the AAV2 <i>rep</i> genes and adenoviral helper functions for rAAV genome replication, independent of the cell type. This approach allows the infectious titration of rAAV serotypes in cell lines permissive to adenovirus but without the production of adenoviral particles for improved safety, therefore benefiting GMP analytical requirements for rAAV gene therapies.</p>","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"33 2","pages":"101492"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12166451/pdf/","citationCount":"0","resultStr":"{\"title\":\"Self-silencing adenovirus enables precise infectious titration of recombinant adeno-associated viral vectors.\",\"authors\":\"Chloé Fustinoni, Xiang Liu, Zhi Chen, Ryan Cawood, Weimin Valenti, Maria I Patrício, Weiheng Su\",\"doi\":\"10.1016/j.omtm.2025.101492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Robust and accurate quantification of recombinant adeno-associated virus (rAAV) vectors' infectivity is essential for pre-clinical and clinical development of AAV gene therapy programs. The industry standard method for rAAV titration is the 50% tissue culture infectious dose (TCID50) assay using HeLa-based cell lines that stably encode the <i>rep</i> and <i>cap</i> genes from AAV serotype 2. Co-infection with wild-type (WT) adenoviruses provides the helper functions for expression of these genes, and the use of quantitative PCR (qPCR)/droplet digital PCR (ddPCR) serves as the endpoint method for the detection of infectious events. However, TCID50 assays using these HeLa-based <i>rep cap trans</i>-complementing cell lines have traditionally been regarded as challenging due to high variability, stability of the integrated genes, and safety concerns associated with the use of WT helper viruses. Here we developed a novel method for infectious titration of rAAV using our vector \\\"tetracycline-enabled self-silencing adenovirus\\\" (TESSA); we engineered it to deliver and express the AAV2 <i>rep</i> genes and adenoviral helper functions for rAAV genome replication, independent of the cell type. This approach allows the infectious titration of rAAV serotypes in cell lines permissive to adenovirus but without the production of adenoviral particles for improved safety, therefore benefiting GMP analytical requirements for rAAV gene therapies.</p>\",\"PeriodicalId\":54333,\"journal\":{\"name\":\"Molecular Therapy-Methods & Clinical Development\",\"volume\":\"33 2\",\"pages\":\"101492\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12166451/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy-Methods & Clinical Development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.omtm.2025.101492\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/12 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy-Methods & Clinical Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtm.2025.101492","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/12 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Robust and accurate quantification of recombinant adeno-associated virus (rAAV) vectors' infectivity is essential for pre-clinical and clinical development of AAV gene therapy programs. The industry standard method for rAAV titration is the 50% tissue culture infectious dose (TCID50) assay using HeLa-based cell lines that stably encode the rep and cap genes from AAV serotype 2. Co-infection with wild-type (WT) adenoviruses provides the helper functions for expression of these genes, and the use of quantitative PCR (qPCR)/droplet digital PCR (ddPCR) serves as the endpoint method for the detection of infectious events. However, TCID50 assays using these HeLa-based rep cap trans-complementing cell lines have traditionally been regarded as challenging due to high variability, stability of the integrated genes, and safety concerns associated with the use of WT helper viruses. Here we developed a novel method for infectious titration of rAAV using our vector "tetracycline-enabled self-silencing adenovirus" (TESSA); we engineered it to deliver and express the AAV2 rep genes and adenoviral helper functions for rAAV genome replication, independent of the cell type. This approach allows the infectious titration of rAAV serotypes in cell lines permissive to adenovirus but without the production of adenoviral particles for improved safety, therefore benefiting GMP analytical requirements for rAAV gene therapies.
期刊介绍:
The aim of Molecular Therapy—Methods & Clinical Development is to build upon the success of Molecular Therapy in publishing important peer-reviewed methods and procedures, as well as translational advances in the broad array of fields under the molecular therapy umbrella.
Topics of particular interest within the journal''s scope include:
Gene vector engineering and production,
Methods for targeted genome editing and engineering,
Methods and technology development for cell reprogramming and directed differentiation of pluripotent cells,
Methods for gene and cell vector delivery,
Development of biomaterials and nanoparticles for applications in gene and cell therapy and regenerative medicine,
Analysis of gene and cell vector biodistribution and tracking,
Pharmacology/toxicology studies of new and next-generation vectors,
Methods for cell isolation, engineering, culture, expansion, and transplantation,
Cell processing, storage, and banking for therapeutic application,
Preclinical and QC/QA assay development,
Translational and clinical scale-up and Good Manufacturing procedures and process development,
Clinical protocol development,
Computational and bioinformatic methods for analysis, modeling, or visualization of biological data,
Negotiating the regulatory approval process and obtaining such approval for clinical trials.