Khovanov Laplacian和Khovanov Dirac。

IF 2.6 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Journal of Physics Complexity Pub Date : 2025-06-01 Epub Date: 2025-06-12 DOI:10.1088/2632-072X/adde9f
Benjamin Jones, Guo-Wei Wei
{"title":"Khovanov Laplacian和Khovanov Dirac。","authors":"Benjamin Jones, Guo-Wei Wei","doi":"10.1088/2632-072X/adde9f","DOIUrl":null,"url":null,"abstract":"<p><p>Khovanov homology has been the subject of much study in knot theory and low dimensional topology since 2000. This work introduces a Khovanov Laplacian and a Khovanov Dirac to study knot and link diagrams. The harmonic spectrum of the Khovanov Laplacian or the Khovanov Dirac retains the topological invariants of Khovanov homology, while their non-harmonic spectra reveal additional information that is distinct from Khovanov homology.</p>","PeriodicalId":53211,"journal":{"name":"Journal of Physics Complexity","volume":"6 2","pages":"025014"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12163897/pdf/","citationCount":"0","resultStr":"{\"title\":\"Khovanov Laplacian and Khovanov Dirac for knots and links.\",\"authors\":\"Benjamin Jones, Guo-Wei Wei\",\"doi\":\"10.1088/2632-072X/adde9f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Khovanov homology has been the subject of much study in knot theory and low dimensional topology since 2000. This work introduces a Khovanov Laplacian and a Khovanov Dirac to study knot and link diagrams. The harmonic spectrum of the Khovanov Laplacian or the Khovanov Dirac retains the topological invariants of Khovanov homology, while their non-harmonic spectra reveal additional information that is distinct from Khovanov homology.</p>\",\"PeriodicalId\":53211,\"journal\":{\"name\":\"Journal of Physics Complexity\",\"volume\":\"6 2\",\"pages\":\"025014\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12163897/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-072X/adde9f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-072X/adde9f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

自2000年以来,Khovanov同调一直是结理论和低维拓扑学研究的主题。本文介绍了一个Khovanov Laplacian和一个Khovanov Dirac来研究结图和连接图。Khovanov拉普拉斯算子和Khovanov狄拉克算子的调和谱保留了Khovanov同调的拓扑不变量,而它们的非调和谱揭示了与Khovanov同调不同的附加信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Khovanov Laplacian and Khovanov Dirac for knots and links.

Khovanov Laplacian and Khovanov Dirac for knots and links.

Khovanov Laplacian and Khovanov Dirac for knots and links.

Khovanov Laplacian and Khovanov Dirac for knots and links.

Khovanov homology has been the subject of much study in knot theory and low dimensional topology since 2000. This work introduces a Khovanov Laplacian and a Khovanov Dirac to study knot and link diagrams. The harmonic spectrum of the Khovanov Laplacian or the Khovanov Dirac retains the topological invariants of Khovanov homology, while their non-harmonic spectra reveal additional information that is distinct from Khovanov homology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics Complexity
Journal of Physics Complexity Computer Science-Information Systems
CiteScore
4.30
自引率
11.10%
发文量
45
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信