Xiaotan Sun, Makiya Nakashima, Christopher Nguyen, Po-Hao Chen, W H Wilson Tang, Deborah Kwon, David Chen
{"title":"FairICP:使用归纳适形预测在实施后临床决策支持的护理点识别偏差并增加透明度。","authors":"Xiaotan Sun, Makiya Nakashima, Christopher Nguyen, Po-Hao Chen, W H Wilson Tang, Deborah Kwon, David Chen","doi":"10.1093/jamia/ocaf095","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Fairness concerns stemming from known and unknown biases in healthcare practices have raised questions about the trustworthiness of Artificial Intelligence (AI)-driven Clinical Decision Support Systems (CDSS). Studies have shown unforeseen performance disparities in subpopulations when applied to clinical settings different from training. Existing unfairness mitigation strategies often struggle with scalability and accessibility, while their pursuit of group-level prediction performance parity does not effectively translate into fairness at the point of care. This study introduces FairICP, a flexible and cost-effective post-implementation framework based on Inductive Conformal Prediction (ICP), to provide users with actionable knowledge of model uncertainty due to subpopulation level biases at the point of care.</p><p><strong>Materials and methods: </strong>FairICP applies ICP to identify the model's scope of competence through group specific calibration, ensuring equitable prediction reliability by filtering predictions that fall within the trusted competence boundaries. We evaluated FairICP against four benchmarks on three medical imaging modalities: (1) Cardiac Magnetic Resonance Imaging (MRI), (2) Chest X-ray and (3) Dermatology Imaging, acquired from both private and large public datasets. Frameworks are assessed on prediction performance enhancement and unfairness mitigation capabilities.</p><p><strong>Results: </strong>Compared to the baseline, FairICP improved prediction accuracy by 7.2% and reduced the accuracy gap between the privileged and unprivileged subpopulations by 2.2% on average across all three datasets.</p><p><strong>Discussion and conclusion: </strong>Our work provides a robust solution to promote trust and transparency in AI-CDSS, fostering equality and equity in healthcare for diverse patient populations. Such post-process methods are critical to enabling a robust framework for AI-CDSS implementation and monitoring for healthcare settings.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":"1299-1309"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12277691/pdf/","citationCount":"0","resultStr":"{\"title\":\"FairICP: identifying biases and increasing transparency at the point of care in post-implementation clinical decision support using inductive conformal prediction.\",\"authors\":\"Xiaotan Sun, Makiya Nakashima, Christopher Nguyen, Po-Hao Chen, W H Wilson Tang, Deborah Kwon, David Chen\",\"doi\":\"10.1093/jamia/ocaf095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Fairness concerns stemming from known and unknown biases in healthcare practices have raised questions about the trustworthiness of Artificial Intelligence (AI)-driven Clinical Decision Support Systems (CDSS). Studies have shown unforeseen performance disparities in subpopulations when applied to clinical settings different from training. Existing unfairness mitigation strategies often struggle with scalability and accessibility, while their pursuit of group-level prediction performance parity does not effectively translate into fairness at the point of care. This study introduces FairICP, a flexible and cost-effective post-implementation framework based on Inductive Conformal Prediction (ICP), to provide users with actionable knowledge of model uncertainty due to subpopulation level biases at the point of care.</p><p><strong>Materials and methods: </strong>FairICP applies ICP to identify the model's scope of competence through group specific calibration, ensuring equitable prediction reliability by filtering predictions that fall within the trusted competence boundaries. We evaluated FairICP against four benchmarks on three medical imaging modalities: (1) Cardiac Magnetic Resonance Imaging (MRI), (2) Chest X-ray and (3) Dermatology Imaging, acquired from both private and large public datasets. Frameworks are assessed on prediction performance enhancement and unfairness mitigation capabilities.</p><p><strong>Results: </strong>Compared to the baseline, FairICP improved prediction accuracy by 7.2% and reduced the accuracy gap between the privileged and unprivileged subpopulations by 2.2% on average across all three datasets.</p><p><strong>Discussion and conclusion: </strong>Our work provides a robust solution to promote trust and transparency in AI-CDSS, fostering equality and equity in healthcare for diverse patient populations. Such post-process methods are critical to enabling a robust framework for AI-CDSS implementation and monitoring for healthcare settings.</p>\",\"PeriodicalId\":50016,\"journal\":{\"name\":\"Journal of the American Medical Informatics Association\",\"volume\":\" \",\"pages\":\"1299-1309\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12277691/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Medical Informatics Association\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1093/jamia/ocaf095\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocaf095","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
FairICP: identifying biases and increasing transparency at the point of care in post-implementation clinical decision support using inductive conformal prediction.
Objectives: Fairness concerns stemming from known and unknown biases in healthcare practices have raised questions about the trustworthiness of Artificial Intelligence (AI)-driven Clinical Decision Support Systems (CDSS). Studies have shown unforeseen performance disparities in subpopulations when applied to clinical settings different from training. Existing unfairness mitigation strategies often struggle with scalability and accessibility, while their pursuit of group-level prediction performance parity does not effectively translate into fairness at the point of care. This study introduces FairICP, a flexible and cost-effective post-implementation framework based on Inductive Conformal Prediction (ICP), to provide users with actionable knowledge of model uncertainty due to subpopulation level biases at the point of care.
Materials and methods: FairICP applies ICP to identify the model's scope of competence through group specific calibration, ensuring equitable prediction reliability by filtering predictions that fall within the trusted competence boundaries. We evaluated FairICP against four benchmarks on three medical imaging modalities: (1) Cardiac Magnetic Resonance Imaging (MRI), (2) Chest X-ray and (3) Dermatology Imaging, acquired from both private and large public datasets. Frameworks are assessed on prediction performance enhancement and unfairness mitigation capabilities.
Results: Compared to the baseline, FairICP improved prediction accuracy by 7.2% and reduced the accuracy gap between the privileged and unprivileged subpopulations by 2.2% on average across all three datasets.
Discussion and conclusion: Our work provides a robust solution to promote trust and transparency in AI-CDSS, fostering equality and equity in healthcare for diverse patient populations. Such post-process methods are critical to enabling a robust framework for AI-CDSS implementation and monitoring for healthcare settings.
期刊介绍:
JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.