医疗数字双胞胎:实现精准医疗和医疗人工智能。

IF 23.8 1区 医学 Q1 MEDICAL INFORMATICS
Christoph Sadée, Stefano Testa, Thomas Barba, Katherine Hartmann, Maximilian Schuessler, Alexander Thieme, George M Church, Ifeoma Okoye, Tina Hernandez-Boussard, Leroy Hood, Ilya Shmulevich, Ellen Kuhl, Olivier Gevaert
{"title":"医疗数字双胞胎:实现精准医疗和医疗人工智能。","authors":"Christoph Sadée, Stefano Testa, Thomas Barba, Katherine Hartmann, Maximilian Schuessler, Alexander Thieme, George M Church, Ifeoma Okoye, Tina Hernandez-Boussard, Leroy Hood, Ilya Shmulevich, Ellen Kuhl, Olivier Gevaert","doi":"10.1016/j.landig.2025.02.004","DOIUrl":null,"url":null,"abstract":"<p><p>The notion of medical digital twins is gaining popularity both within the scientific community and among the general public; however, much of the recent enthusiasm has occurred in the absence of a consensus on their fundamental make-up. Digital twins originate in the field of engineering, in which a constantly updating virtual copy enables analysis, simulation, and prediction of a real-world object or process. In this Health Policy paper, we evaluate this concept in the context of medicine and outline five key components of the medical digital twin: the patient, data connection, patient-in-silico, interface, and twin synchronisation. We consider how various enabling technologies in multimodal data, artificial intelligence, and mechanistic modelling will pave the way for clinical adoption and provide examples pertaining to oncology and diabetes. We highlight the role of data fusion and the potential of merging artificial intelligence and mechanistic modelling to address the limitations of either the AI or the mechanistic modelling approach used independently. In particular, we highlight how the digital twin concept can support the performance of large language models applied in medicine and its potential to address health-care challenges. We believe that this Health Policy paper will help to guide scientists, clinicians, and policy makers in creating medical digital twins in the future and translating this promising new paradigm from theory into clinical practice.</p>","PeriodicalId":48534,"journal":{"name":"Lancet Digital Health","volume":" ","pages":"100864"},"PeriodicalIF":23.8000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Medical digital twins: enabling precision medicine and medical artificial intelligence.\",\"authors\":\"Christoph Sadée, Stefano Testa, Thomas Barba, Katherine Hartmann, Maximilian Schuessler, Alexander Thieme, George M Church, Ifeoma Okoye, Tina Hernandez-Boussard, Leroy Hood, Ilya Shmulevich, Ellen Kuhl, Olivier Gevaert\",\"doi\":\"10.1016/j.landig.2025.02.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The notion of medical digital twins is gaining popularity both within the scientific community and among the general public; however, much of the recent enthusiasm has occurred in the absence of a consensus on their fundamental make-up. Digital twins originate in the field of engineering, in which a constantly updating virtual copy enables analysis, simulation, and prediction of a real-world object or process. In this Health Policy paper, we evaluate this concept in the context of medicine and outline five key components of the medical digital twin: the patient, data connection, patient-in-silico, interface, and twin synchronisation. We consider how various enabling technologies in multimodal data, artificial intelligence, and mechanistic modelling will pave the way for clinical adoption and provide examples pertaining to oncology and diabetes. We highlight the role of data fusion and the potential of merging artificial intelligence and mechanistic modelling to address the limitations of either the AI or the mechanistic modelling approach used independently. In particular, we highlight how the digital twin concept can support the performance of large language models applied in medicine and its potential to address health-care challenges. We believe that this Health Policy paper will help to guide scientists, clinicians, and policy makers in creating medical digital twins in the future and translating this promising new paradigm from theory into clinical practice.</p>\",\"PeriodicalId\":48534,\"journal\":{\"name\":\"Lancet Digital Health\",\"volume\":\" \",\"pages\":\"100864\"},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lancet Digital Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.landig.2025.02.004\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lancet Digital Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.landig.2025.02.004","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

摘要

医学数字双胞胎的概念在科学界和公众中越来越受欢迎;然而,最近的热情在很大程度上是在对它们的基本构成缺乏共识的情况下出现的。数字双胞胎起源于工程领域,其中不断更新的虚拟副本可以对现实世界的对象或过程进行分析、模拟和预测。在这篇健康政策论文中,我们在医学背景下评估了这一概念,并概述了医疗数字孪生的五个关键组成部分:患者、数据连接、硅片患者、接口和孪生同步。我们考虑了多模态数据、人工智能和机械建模中的各种使能技术将如何为临床应用铺平道路,并提供与肿瘤学和糖尿病相关的示例。我们强调了数据融合的作用以及将人工智能和机械建模相结合的潜力,以解决独立使用人工智能或机械建模方法的局限性。我们特别强调了数字孪生概念如何支持医学中应用的大型语言模型的性能及其解决医疗保健挑战的潜力。我们相信,这份卫生政策文件将有助于指导科学家、临床医生和政策制定者在未来创造医疗数字双胞胎,并将这一有前途的新范式从理论转化为临床实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Medical digital twins: enabling precision medicine and medical artificial intelligence.

The notion of medical digital twins is gaining popularity both within the scientific community and among the general public; however, much of the recent enthusiasm has occurred in the absence of a consensus on their fundamental make-up. Digital twins originate in the field of engineering, in which a constantly updating virtual copy enables analysis, simulation, and prediction of a real-world object or process. In this Health Policy paper, we evaluate this concept in the context of medicine and outline five key components of the medical digital twin: the patient, data connection, patient-in-silico, interface, and twin synchronisation. We consider how various enabling technologies in multimodal data, artificial intelligence, and mechanistic modelling will pave the way for clinical adoption and provide examples pertaining to oncology and diabetes. We highlight the role of data fusion and the potential of merging artificial intelligence and mechanistic modelling to address the limitations of either the AI or the mechanistic modelling approach used independently. In particular, we highlight how the digital twin concept can support the performance of large language models applied in medicine and its potential to address health-care challenges. We believe that this Health Policy paper will help to guide scientists, clinicians, and policy makers in creating medical digital twins in the future and translating this promising new paradigm from theory into clinical practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
41.20
自引率
1.60%
发文量
232
审稿时长
13 weeks
期刊介绍: The Lancet Digital Health publishes important, innovative, and practice-changing research on any topic connected with digital technology in clinical medicine, public health, and global health. The journal’s open access content crosses subject boundaries, building bridges between health professionals and researchers.By bringing together the most important advances in this multidisciplinary field,The Lancet Digital Health is the most prominent publishing venue in digital health. We publish a range of content types including Articles,Review, Comment, and Correspondence, contributing to promoting digital technologies in health practice worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信