David D Fuller, Sabhya Rana, Prajwal P Thakre, Ethan S Benevides, Megan K Pope, Adrian G Todd, Victoria N Jensen, Lauren Vaught, Denise A Cloutier, Roberto A Ribas, Reece C Larson, Matthew S Gentry, Ramon C Sun, Vijay Chandran, Manuela Corti, Darin J Falk, Barry J Byrne
{"title":"新生儿全身基因治疗可恢复庞贝病大鼠模型的心肺功能。","authors":"David D Fuller, Sabhya Rana, Prajwal P Thakre, Ethan S Benevides, Megan K Pope, Adrian G Todd, Victoria N Jensen, Lauren Vaught, Denise A Cloutier, Roberto A Ribas, Reece C Larson, Matthew S Gentry, Ramon C Sun, Vijay Chandran, Manuela Corti, Darin J Falk, Barry J Byrne","doi":"10.1016/j.ymthe.2025.06.022","DOIUrl":null,"url":null,"abstract":"<p><p>Absence of functional acid-α-glucosidase (GAA) leads to early onset Pompe disease with cardiorespiratory and neuromuscular failure. A novel Pompe rat model (Gaa<sup>-/-</sup>) was used to test the hypothesis that neonatal gene therapy with adeno-associated virus serotype 9 (AAV9) restores cardiorespiratory neuromuscular function across the lifespan. Temporal vein administration of AAV9-DES-GAA or sham (saline) injection was done on postnatal day 1; rats were studied at 6-12 months old. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI) revealed that AAV-GAA treatment normalized diaphragm muscle glycogen as well as glycans. In vivo magnetic resonance imaging demonstrated that impaired cardiac volumes in Gaa<sup>-/-</sup> rats were corrected by AAV-GAA treatment. Biochemical assays showed that AAV treatment increased GAA activity in the heart, diaphragm, quadriceps, and spinal cord. Inspiratory tidal volume and minute ventilation were increased in AAV-GAA-treated vs. saline-treated Pompe rats. Neurophysiological phrenic nerve recordings and spinal histological evaluation indicated that AAV-GAA treatment drove functional neuronal GAA expression. We conclude that neonatal AAV9-DES-GAA therapy drives sustained, functional GAA expression and improved cardiorespiratory function in the Gaa<sup>-/-</sup> rat model of Pompe disease.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neonatal systemic gene therapy restores cardiorespiratory function in a rat model of Pompe disease.\",\"authors\":\"David D Fuller, Sabhya Rana, Prajwal P Thakre, Ethan S Benevides, Megan K Pope, Adrian G Todd, Victoria N Jensen, Lauren Vaught, Denise A Cloutier, Roberto A Ribas, Reece C Larson, Matthew S Gentry, Ramon C Sun, Vijay Chandran, Manuela Corti, Darin J Falk, Barry J Byrne\",\"doi\":\"10.1016/j.ymthe.2025.06.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Absence of functional acid-α-glucosidase (GAA) leads to early onset Pompe disease with cardiorespiratory and neuromuscular failure. A novel Pompe rat model (Gaa<sup>-/-</sup>) was used to test the hypothesis that neonatal gene therapy with adeno-associated virus serotype 9 (AAV9) restores cardiorespiratory neuromuscular function across the lifespan. Temporal vein administration of AAV9-DES-GAA or sham (saline) injection was done on postnatal day 1; rats were studied at 6-12 months old. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI) revealed that AAV-GAA treatment normalized diaphragm muscle glycogen as well as glycans. In vivo magnetic resonance imaging demonstrated that impaired cardiac volumes in Gaa<sup>-/-</sup> rats were corrected by AAV-GAA treatment. Biochemical assays showed that AAV treatment increased GAA activity in the heart, diaphragm, quadriceps, and spinal cord. Inspiratory tidal volume and minute ventilation were increased in AAV-GAA-treated vs. saline-treated Pompe rats. Neurophysiological phrenic nerve recordings and spinal histological evaluation indicated that AAV-GAA treatment drove functional neuronal GAA expression. We conclude that neonatal AAV9-DES-GAA therapy drives sustained, functional GAA expression and improved cardiorespiratory function in the Gaa<sup>-/-</sup> rat model of Pompe disease.</p>\",\"PeriodicalId\":19020,\"journal\":{\"name\":\"Molecular Therapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymthe.2025.06.022\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.06.022","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Neonatal systemic gene therapy restores cardiorespiratory function in a rat model of Pompe disease.
Absence of functional acid-α-glucosidase (GAA) leads to early onset Pompe disease with cardiorespiratory and neuromuscular failure. A novel Pompe rat model (Gaa-/-) was used to test the hypothesis that neonatal gene therapy with adeno-associated virus serotype 9 (AAV9) restores cardiorespiratory neuromuscular function across the lifespan. Temporal vein administration of AAV9-DES-GAA or sham (saline) injection was done on postnatal day 1; rats were studied at 6-12 months old. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI) revealed that AAV-GAA treatment normalized diaphragm muscle glycogen as well as glycans. In vivo magnetic resonance imaging demonstrated that impaired cardiac volumes in Gaa-/- rats were corrected by AAV-GAA treatment. Biochemical assays showed that AAV treatment increased GAA activity in the heart, diaphragm, quadriceps, and spinal cord. Inspiratory tidal volume and minute ventilation were increased in AAV-GAA-treated vs. saline-treated Pompe rats. Neurophysiological phrenic nerve recordings and spinal histological evaluation indicated that AAV-GAA treatment drove functional neuronal GAA expression. We conclude that neonatal AAV9-DES-GAA therapy drives sustained, functional GAA expression and improved cardiorespiratory function in the Gaa-/- rat model of Pompe disease.
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.