Maarten Klaverdijk, Mehrab Nemati, Marcel Ottens, Marieke E Klijn
{"title":"生物反应器工艺参数和酵母生物量对拉曼光谱的影响。","authors":"Maarten Klaverdijk, Mehrab Nemati, Marcel Ottens, Marieke E Klijn","doi":"10.1002/btpr.70050","DOIUrl":null,"url":null,"abstract":"<p><p>In-line Raman spectroscopy combined with chemometric modeling is a valuable process analytical technology (PAT) providing real-time quantitative information on cell culture compounds. Considering that compound quantification through chemometric models depends on pre-processing to maintain consistent changes in intensity at certain wavenumbers, all causes of signal distortion should be well understood to prevent quantification inaccuracies. This work investigated spectral distortion caused by the changing bioreactor parameters temperature, bubble quantity, and medium viscosity. In addition, the isolated spectral contribution of Saccharomyces cerevisiae cells in suspension was also determined. A temperature range from 20 to 40°C resulted in peak shifts up to 0.8 cm<sup>-1</sup> to lower wavenumbers, bubbles generated under standard bioreactor operation conditions led to signal attenuation of up to 7.93% reduction in peak intensity, and changes in liquid viscosity resulted in complex peak shift behavior. Isolated biomass concentrations reaching 5 g/L caused up to 44.6% reduction in distinct peak intensity, which was similar to spectra from batch process fermentations. Correcting for the attenuation revealed spectral features of biomass associated with proteins and lipids in the 1000-1500 cm<sup>-1</sup> region. However, the spectral contribution of yeast biomass is dominated by signal extinction, which attenuates Raman spectra in a non-linear manner as biomass accumulates. The obtained knowledge on different sources of spectral distortion aids in the development of robust pre-processing and modeling strategies to obtain chemometric models applicable across experimental setups.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e70050"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of bioreactor process parameters and yeast biomass on Raman spectra.\",\"authors\":\"Maarten Klaverdijk, Mehrab Nemati, Marcel Ottens, Marieke E Klijn\",\"doi\":\"10.1002/btpr.70050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In-line Raman spectroscopy combined with chemometric modeling is a valuable process analytical technology (PAT) providing real-time quantitative information on cell culture compounds. Considering that compound quantification through chemometric models depends on pre-processing to maintain consistent changes in intensity at certain wavenumbers, all causes of signal distortion should be well understood to prevent quantification inaccuracies. This work investigated spectral distortion caused by the changing bioreactor parameters temperature, bubble quantity, and medium viscosity. In addition, the isolated spectral contribution of Saccharomyces cerevisiae cells in suspension was also determined. A temperature range from 20 to 40°C resulted in peak shifts up to 0.8 cm<sup>-1</sup> to lower wavenumbers, bubbles generated under standard bioreactor operation conditions led to signal attenuation of up to 7.93% reduction in peak intensity, and changes in liquid viscosity resulted in complex peak shift behavior. Isolated biomass concentrations reaching 5 g/L caused up to 44.6% reduction in distinct peak intensity, which was similar to spectra from batch process fermentations. Correcting for the attenuation revealed spectral features of biomass associated with proteins and lipids in the 1000-1500 cm<sup>-1</sup> region. However, the spectral contribution of yeast biomass is dominated by signal extinction, which attenuates Raman spectra in a non-linear manner as biomass accumulates. The obtained knowledge on different sources of spectral distortion aids in the development of robust pre-processing and modeling strategies to obtain chemometric models applicable across experimental setups.</p>\",\"PeriodicalId\":8856,\"journal\":{\"name\":\"Biotechnology Progress\",\"volume\":\" \",\"pages\":\"e70050\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/btpr.70050\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.70050","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Impact of bioreactor process parameters and yeast biomass on Raman spectra.
In-line Raman spectroscopy combined with chemometric modeling is a valuable process analytical technology (PAT) providing real-time quantitative information on cell culture compounds. Considering that compound quantification through chemometric models depends on pre-processing to maintain consistent changes in intensity at certain wavenumbers, all causes of signal distortion should be well understood to prevent quantification inaccuracies. This work investigated spectral distortion caused by the changing bioreactor parameters temperature, bubble quantity, and medium viscosity. In addition, the isolated spectral contribution of Saccharomyces cerevisiae cells in suspension was also determined. A temperature range from 20 to 40°C resulted in peak shifts up to 0.8 cm-1 to lower wavenumbers, bubbles generated under standard bioreactor operation conditions led to signal attenuation of up to 7.93% reduction in peak intensity, and changes in liquid viscosity resulted in complex peak shift behavior. Isolated biomass concentrations reaching 5 g/L caused up to 44.6% reduction in distinct peak intensity, which was similar to spectra from batch process fermentations. Correcting for the attenuation revealed spectral features of biomass associated with proteins and lipids in the 1000-1500 cm-1 region. However, the spectral contribution of yeast biomass is dominated by signal extinction, which attenuates Raman spectra in a non-linear manner as biomass accumulates. The obtained knowledge on different sources of spectral distortion aids in the development of robust pre-processing and modeling strategies to obtain chemometric models applicable across experimental setups.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.