血管相关迁移细胞蛋白通过增强磷酸甘油酸激酶1磷酸化促进结直肠癌的进展

IF 3.6 3区 生物学 Q3 CELL BIOLOGY
Wei Zhang, Qian Shi, Qincheng Liu, Haomiao Zhang, Ji Xia, Xueli Zhang
{"title":"血管相关迁移细胞蛋白通过增强磷酸甘油酸激酶1磷酸化促进结直肠癌的进展","authors":"Wei Zhang,&nbsp;Qian Shi,&nbsp;Qincheng Liu,&nbsp;Haomiao Zhang,&nbsp;Ji Xia,&nbsp;Xueli Zhang","doi":"10.1002/ccs3.70023","DOIUrl":null,"url":null,"abstract":"<p>To elucidate the oncogenic role of angio-associated migratory cell protein (AAMP) in colorectal cancer (CRC) and its mechanistic interplay with phosphoglycerate kinase 1 (PGK1). AAMP expression was analyzed in CRC and normal tissues (tissue microarrays-immunohistochemical/Western blot). Functional impacts were assessed via siRNA knockdown and lentiviral overexpression in CRC cell lines (proliferation: CCK-8/3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide/clonogenic assays; tumorigenesis: xenografts). Molecular mechanisms were explored through co-immunoprecipitation, phosphorylation assays, and Ribonucleic Acid (RNA) sequencing. AAMP was significantly upregulated in CRC versus normal tissues (<i>p</i> &lt; 0.05), correlating with poor patient survival. AAMP knockdown suppressed CRC cell proliferation, colony formation, and xenograft tumor growth, whereas overexpression exacerbated these phenotypes. Mechanistically, AAMP directly bound PGK1 and enhanced its phosphorylation (p-PGK1), driving CRC proliferation. PGK1 silencing abrogated AAMP-mediated proliferative effects. RNA sequencing revealed AAMP modulation of immune-related pathways (Tumor Necrosis Factor, IL-17, Jak-STAT) and key proteins (EGFR, RPL10, NOD2), suggesting dual roles in proliferation. AAMP promotes CRC progression through PGK1 phosphorylation-dependent metabolic activation, proposing the AAMP-PGK1 axis as a therapeutic target for advanced CRC.</p>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"19 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ccs3.70023","citationCount":"0","resultStr":"{\"title\":\"Angio-associated migratory cell protein promotes colorectal cancer progression by enhancing phosphoglycerate kinase 1 phosphorylation\",\"authors\":\"Wei Zhang,&nbsp;Qian Shi,&nbsp;Qincheng Liu,&nbsp;Haomiao Zhang,&nbsp;Ji Xia,&nbsp;Xueli Zhang\",\"doi\":\"10.1002/ccs3.70023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To elucidate the oncogenic role of angio-associated migratory cell protein (AAMP) in colorectal cancer (CRC) and its mechanistic interplay with phosphoglycerate kinase 1 (PGK1). AAMP expression was analyzed in CRC and normal tissues (tissue microarrays-immunohistochemical/Western blot). Functional impacts were assessed via siRNA knockdown and lentiviral overexpression in CRC cell lines (proliferation: CCK-8/3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide/clonogenic assays; tumorigenesis: xenografts). Molecular mechanisms were explored through co-immunoprecipitation, phosphorylation assays, and Ribonucleic Acid (RNA) sequencing. AAMP was significantly upregulated in CRC versus normal tissues (<i>p</i> &lt; 0.05), correlating with poor patient survival. AAMP knockdown suppressed CRC cell proliferation, colony formation, and xenograft tumor growth, whereas overexpression exacerbated these phenotypes. Mechanistically, AAMP directly bound PGK1 and enhanced its phosphorylation (p-PGK1), driving CRC proliferation. PGK1 silencing abrogated AAMP-mediated proliferative effects. RNA sequencing revealed AAMP modulation of immune-related pathways (Tumor Necrosis Factor, IL-17, Jak-STAT) and key proteins (EGFR, RPL10, NOD2), suggesting dual roles in proliferation. AAMP promotes CRC progression through PGK1 phosphorylation-dependent metabolic activation, proposing the AAMP-PGK1 axis as a therapeutic target for advanced CRC.</p>\",\"PeriodicalId\":15226,\"journal\":{\"name\":\"Journal of Cell Communication and Signaling\",\"volume\":\"19 2\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ccs3.70023\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ccs3.70023\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ccs3.70023","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:阐明血管相关迁移细胞蛋白(AAMP)在结直肠癌(CRC)中的致癌作用及其与磷酸甘油酸激酶1 (PGK1)的相互作用机制。在结直肠癌和正常组织中分析AAMP的表达(组织芯片-免疫组化/Western blot)。通过siRNA敲低和慢病毒在结直肠癌细胞系中的过表达来评估功能影响(增殖:CCK-8/3-(4,5-二甲基噻唑-2-基)-2,5-二苯基溴化四唑/克隆性测定;肿瘤发生:异种移植)。通过共免疫沉淀、磷酸化测定和核糖核酸(RNA)测序来探索分子机制。与正常组织相比,结直肠癌中AAMP显著上调(p <;0.05),与较差的患者生存率相关。AAMP敲低抑制结直肠癌细胞增殖、集落形成和异种移植物肿瘤生长,而过表达则加剧了这些表型。在机制上,AAMP直接结合PGK1并增强其磷酸化(p-PGK1),促进结直肠癌的增殖。PGK1沉默消除了aamp介导的增殖作用。RNA测序显示AAMP调节免疫相关通路(肿瘤坏死因子、IL-17、Jak-STAT)和关键蛋白(EGFR、RPL10、NOD2),提示在增殖中具有双重作用。AAMP通过PGK1磷酸化依赖的代谢激活促进结直肠癌进展,提出AAMP-PGK1轴作为晚期结直肠癌的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Angio-associated migratory cell protein promotes colorectal cancer progression by enhancing phosphoglycerate kinase 1 phosphorylation

To elucidate the oncogenic role of angio-associated migratory cell protein (AAMP) in colorectal cancer (CRC) and its mechanistic interplay with phosphoglycerate kinase 1 (PGK1). AAMP expression was analyzed in CRC and normal tissues (tissue microarrays-immunohistochemical/Western blot). Functional impacts were assessed via siRNA knockdown and lentiviral overexpression in CRC cell lines (proliferation: CCK-8/3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide/clonogenic assays; tumorigenesis: xenografts). Molecular mechanisms were explored through co-immunoprecipitation, phosphorylation assays, and Ribonucleic Acid (RNA) sequencing. AAMP was significantly upregulated in CRC versus normal tissues (p < 0.05), correlating with poor patient survival. AAMP knockdown suppressed CRC cell proliferation, colony formation, and xenograft tumor growth, whereas overexpression exacerbated these phenotypes. Mechanistically, AAMP directly bound PGK1 and enhanced its phosphorylation (p-PGK1), driving CRC proliferation. PGK1 silencing abrogated AAMP-mediated proliferative effects. RNA sequencing revealed AAMP modulation of immune-related pathways (Tumor Necrosis Factor, IL-17, Jak-STAT) and key proteins (EGFR, RPL10, NOD2), suggesting dual roles in proliferation. AAMP promotes CRC progression through PGK1 phosphorylation-dependent metabolic activation, proposing the AAMP-PGK1 axis as a therapeutic target for advanced CRC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
4.90%
发文量
40
期刊介绍: The Journal of Cell Communication and Signaling provides a forum for fundamental and translational research. In particular, it publishes papers discussing intercellular and intracellular signaling pathways that are particularly important to understand how cells interact with each other and with the surrounding environment, and how cellular behavior contributes to pathological states. JCCS encourages the submission of research manuscripts, timely reviews and short commentaries discussing recent publications, key developments and controversies. Research manuscripts can be published under two different sections : In the Pathology and Translational Research Section (Section Editor Andrew Leask) , manuscripts report original research dealing with celllular aspects of normal and pathological signaling and communication, with a particular interest in translational research. In the Molecular Signaling Section (Section Editor Satoshi Kubota) manuscripts report original signaling research performed at molecular levels with a particular interest in the functions of intracellular and membrane components involved in cell signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信