基于鲁棒观测器和椭球分析的Lipschitz非线性系统故障检测

IF 3.2 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Renpu Zhang, Zhenhua Wang, Nacim Meslem, Tarek Raïssi, Yi Shen
{"title":"基于鲁棒观测器和椭球分析的Lipschitz非线性系统故障检测","authors":"Renpu Zhang,&nbsp;Zhenhua Wang,&nbsp;Nacim Meslem,&nbsp;Tarek Raïssi,&nbsp;Yi Shen","doi":"10.1002/rnc.7918","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This article proposes a fault detection method for continuous-time Lipschitz nonlinear systems via robust observer design and ellipsoidal analysis. First, an augmented system is established by considering the fault as an auxiliary state vector. Then, an observer is designed using <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mi>∞</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {L}_{\\infty } $$</annotation>\n </semantics></math> performance, which can be applied to generate robust residuals. Then, a residual evaluation method via ellipsoidal analysis is proposed, which is used to check whether the guaranteed estimations of the fault and residual stay confined inside safe regions. Thus, fault detection is achieved through an assessment of a Boolean expression. Finally, two numerical simulation results are given to show the effectiveness and merit of the proposed approach.</p>\n </div>","PeriodicalId":50291,"journal":{"name":"International Journal of Robust and Nonlinear Control","volume":"35 11","pages":"4523-4535"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault Detection for Lipschitz Nonlinear Systems Using Robust Observer and Ellipsoidal Analysis\",\"authors\":\"Renpu Zhang,&nbsp;Zhenhua Wang,&nbsp;Nacim Meslem,&nbsp;Tarek Raïssi,&nbsp;Yi Shen\",\"doi\":\"10.1002/rnc.7918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This article proposes a fault detection method for continuous-time Lipschitz nonlinear systems via robust observer design and ellipsoidal analysis. First, an augmented system is established by considering the fault as an auxiliary state vector. Then, an observer is designed using <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <mrow>\\n <mi>∞</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {L}_{\\\\infty } $$</annotation>\\n </semantics></math> performance, which can be applied to generate robust residuals. Then, a residual evaluation method via ellipsoidal analysis is proposed, which is used to check whether the guaranteed estimations of the fault and residual stay confined inside safe regions. Thus, fault detection is achieved through an assessment of a Boolean expression. Finally, two numerical simulation results are given to show the effectiveness and merit of the proposed approach.</p>\\n </div>\",\"PeriodicalId\":50291,\"journal\":{\"name\":\"International Journal of Robust and Nonlinear Control\",\"volume\":\"35 11\",\"pages\":\"4523-4535\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Robust and Nonlinear Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rnc.7918\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robust and Nonlinear Control","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rnc.7918","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于鲁棒观测器设计和椭球分析的连续时间Lipschitz非线性系统故障检测方法。首先,将故障作为辅助状态向量,建立增广系统;然后,利用L∞$$ {L}_{\infty } $$性能设计观测器,用于产生鲁棒残差。然后,提出了一种基于椭球体分析的残差评价方法,用于检验断层和残差的保证估计是否局限在安全区域内。因此,通过对布尔表达式的评估来实现故障检测。最后给出了两个数值仿真结果,验证了该方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault Detection for Lipschitz Nonlinear Systems Using Robust Observer and Ellipsoidal Analysis

This article proposes a fault detection method for continuous-time Lipschitz nonlinear systems via robust observer design and ellipsoidal analysis. First, an augmented system is established by considering the fault as an auxiliary state vector. Then, an observer is designed using L $$ {L}_{\infty } $$ performance, which can be applied to generate robust residuals. Then, a residual evaluation method via ellipsoidal analysis is proposed, which is used to check whether the guaranteed estimations of the fault and residual stay confined inside safe regions. Thus, fault detection is achieved through an assessment of a Boolean expression. Finally, two numerical simulation results are given to show the effectiveness and merit of the proposed approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Robust and Nonlinear Control
International Journal of Robust and Nonlinear Control 工程技术-工程:电子与电气
CiteScore
6.70
自引率
20.50%
发文量
505
审稿时长
2.7 months
期刊介绍: Papers that do not include an element of robust or nonlinear control and estimation theory will not be considered by the journal, and all papers will be expected to include significant novel content. The focus of the journal is on model based control design approaches rather than heuristic or rule based methods. Papers on neural networks will have to be of exceptional novelty to be considered for the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信