{"title":"MRM模式下靶向desi - msi定量质谱成像为快速定量小鼠肾脏中氯喹药物提供了更高的灵敏度和特异性","authors":"Md. Muedur Rahman, Mst. Sayela Afroz, Md. Al Mamun, Ariful Islam, Takumi Sakamoto, Shuhei Aramaki, Tomohito Sato, Thanai Paxton, Yutaka Takahashi, Tomoaki Kahyo, Mitsutoshi Setou","doi":"10.1002/jms.5148","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Quantitative mass spectrometry imaging (QMSI) is being applied for spatial quantification of drugs and metabolites using mass spectrometry imaging (MSI) tools. DESI-MSI is ideally suited to QMSI as a soft and ambient ionization technique. However, some challenging issues of QMSI include extraction efficiency, matrix effect, sensitivity, and specificity, which need to be addressed. Here, we applied targeted DESI-MSI in multiple reaction monitoring (MRM) mode for QMSI of chloroquine, an antimalarial drug, as a model in mice kidneys and carefully addressed those challenging issues. A triple quadrupole mass spectrometer coupled with a DESI source was used to quantify the chloroquine (transition <i>m/z</i> 320.2 → 247.1) drug. A deuterated internal standard chloroquine-d<sub>5</sub> (transition <i>m/z</i> 325.2 → 147.1), was used to normalize the data from pixel to pixel. A mimetic in-tissue model was employed to constract a calibration curve demonstrating good linearity (y = 0.0041x, <i>R</i><sup><i>2</i></sup> = 0.9953) and precision (RSD < 15%). The calibration curve was validated by back-calculation, with results falling within acceptable ranges (accuracy error< ±15%). Finally, the dosed (30 mg/kg) chloroquine was quantified in three spatial regions (cortex, medulla, and pelvis) in the mice kidneys. The highest concentrations of chloroquine in the pelvis (399.85 and 436.28 ng/mg of kidney tissue at 30 and 60 min intervals) region is consistent with the previous report that a portion of the drug is eliminated from the kidney as unchanged forms. This study provides valuable insights into using DESI-MSI in MRM mode for the QMSI of drugs in biological tissues and will have implications for future research on pharmacology and toxicology.</p>\n </div>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":"60 7","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative Mass Spectrometry Imaging by Targeted-DESI-MSI in MRM Mode Provides Higher Sensitivity and Specificity for Fast Quantification of Chloroquine Drug in Mice Kidney\",\"authors\":\"Md. Muedur Rahman, Mst. Sayela Afroz, Md. Al Mamun, Ariful Islam, Takumi Sakamoto, Shuhei Aramaki, Tomohito Sato, Thanai Paxton, Yutaka Takahashi, Tomoaki Kahyo, Mitsutoshi Setou\",\"doi\":\"10.1002/jms.5148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Quantitative mass spectrometry imaging (QMSI) is being applied for spatial quantification of drugs and metabolites using mass spectrometry imaging (MSI) tools. DESI-MSI is ideally suited to QMSI as a soft and ambient ionization technique. However, some challenging issues of QMSI include extraction efficiency, matrix effect, sensitivity, and specificity, which need to be addressed. Here, we applied targeted DESI-MSI in multiple reaction monitoring (MRM) mode for QMSI of chloroquine, an antimalarial drug, as a model in mice kidneys and carefully addressed those challenging issues. A triple quadrupole mass spectrometer coupled with a DESI source was used to quantify the chloroquine (transition <i>m/z</i> 320.2 → 247.1) drug. A deuterated internal standard chloroquine-d<sub>5</sub> (transition <i>m/z</i> 325.2 → 147.1), was used to normalize the data from pixel to pixel. A mimetic in-tissue model was employed to constract a calibration curve demonstrating good linearity (y = 0.0041x, <i>R</i><sup><i>2</i></sup> = 0.9953) and precision (RSD < 15%). The calibration curve was validated by back-calculation, with results falling within acceptable ranges (accuracy error< ±15%). Finally, the dosed (30 mg/kg) chloroquine was quantified in three spatial regions (cortex, medulla, and pelvis) in the mice kidneys. The highest concentrations of chloroquine in the pelvis (399.85 and 436.28 ng/mg of kidney tissue at 30 and 60 min intervals) region is consistent with the previous report that a portion of the drug is eliminated from the kidney as unchanged forms. This study provides valuable insights into using DESI-MSI in MRM mode for the QMSI of drugs in biological tissues and will have implications for future research on pharmacology and toxicology.</p>\\n </div>\",\"PeriodicalId\":16178,\"journal\":{\"name\":\"Journal of Mass Spectrometry\",\"volume\":\"60 7\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jms.5148\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jms.5148","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Quantitative Mass Spectrometry Imaging by Targeted-DESI-MSI in MRM Mode Provides Higher Sensitivity and Specificity for Fast Quantification of Chloroquine Drug in Mice Kidney
Quantitative mass spectrometry imaging (QMSI) is being applied for spatial quantification of drugs and metabolites using mass spectrometry imaging (MSI) tools. DESI-MSI is ideally suited to QMSI as a soft and ambient ionization technique. However, some challenging issues of QMSI include extraction efficiency, matrix effect, sensitivity, and specificity, which need to be addressed. Here, we applied targeted DESI-MSI in multiple reaction monitoring (MRM) mode for QMSI of chloroquine, an antimalarial drug, as a model in mice kidneys and carefully addressed those challenging issues. A triple quadrupole mass spectrometer coupled with a DESI source was used to quantify the chloroquine (transition m/z 320.2 → 247.1) drug. A deuterated internal standard chloroquine-d5 (transition m/z 325.2 → 147.1), was used to normalize the data from pixel to pixel. A mimetic in-tissue model was employed to constract a calibration curve demonstrating good linearity (y = 0.0041x, R2 = 0.9953) and precision (RSD < 15%). The calibration curve was validated by back-calculation, with results falling within acceptable ranges (accuracy error< ±15%). Finally, the dosed (30 mg/kg) chloroquine was quantified in three spatial regions (cortex, medulla, and pelvis) in the mice kidneys. The highest concentrations of chloroquine in the pelvis (399.85 and 436.28 ng/mg of kidney tissue at 30 and 60 min intervals) region is consistent with the previous report that a portion of the drug is eliminated from the kidney as unchanged forms. This study provides valuable insights into using DESI-MSI in MRM mode for the QMSI of drugs in biological tissues and will have implications for future research on pharmacology and toxicology.
期刊介绍:
The Journal of Mass Spectrometry publishes papers on a broad range of topics of interest to scientists working in both fundamental and applied areas involving the study of gaseous ions.
The aim of JMS is to serve the scientific community with information provided and arranged to help senior investigators to better stay abreast of new discoveries and studies in their own field, to make them aware of events and developments in associated fields, and to provide students and newcomers the basic tools with which to learn fundamental and applied aspects of mass spectrometry.