Adel Alkhalil;Abdul Razzaq;Aakash Ahmad;Magdy Abdelrhman;Yaser Altameemi;Mohammed Altamimi;Zhang Tao
{"title":"基于区块链的移动医疗(mHealth)系统安全管理框架","authors":"Adel Alkhalil;Abdul Razzaq;Aakash Ahmad;Magdy Abdelrhman;Yaser Altameemi;Mohammed Altamimi;Zhang Tao","doi":"10.13052/jwe1540-9589.2431","DOIUrl":null,"url":null,"abstract":"In recent years, several research and development initiatives have focused on developing secure and trustworthy systems for the healthcare industry via pervasive and mobile healthcare (mHealth) solutions. State-of-the-art mHealth solutions primarily rely on centralized storage, such as cloud computing servers, which may escalate the maintenance costs, require ever-increasing storage infrastructure, and pose privacy and security risks to the health-critical data produced, consumed, and transmitted over ad hoc networks. To overcome these limitations, we conducted this study intending to synergize mobile computing (devices to process health-critical data) and blockchain technology (infrastructure to secure storage and retrieval of health-critical data), specifically addressing data security and privacy using a blockchain mHealth system. The research employs an incremental method by (i) developing a framework that acts as a blueprint to architect blockchain-enabled mHealth systems, (ii) implementing a suite of algorithms as a proof-of-concept to automate the framework, and (iii) experimental evaluations to validate the scalability, computation, and energy efficiency of the proposed solution. The proposed framework has been implemented as a frontend using a mobile application interface that exploits the backend via the InterPlanetary File System (IPFS) system and Ethereum blockchain for secure management of mHealth data. We use a case-study-based approach demonstrating how health units, medics, and patients can securely access and distribute health-critical data. For evaluation, we deployed a smart contract prototype on the Ethereum TESTNET network in a Windows environment to test the proposed framework. Results of the evaluation indicate (a) scalability with query response time (range: 10–41 ms), (b) computational performance (CPU utilization: 1.5% – 2.5%), and (c) energy efficiency (gas consumption: 40000 units for 1000 bytes). The proposed solution – framework, algorithms, and experimental evaluation – aims to advance state-of-the-art architecting and implementing cybersecurity mHealth solutions using blockchain technology.","PeriodicalId":49952,"journal":{"name":"Journal of Web Engineering","volume":"24 3","pages":"317-354"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11037630","citationCount":"0","resultStr":"{\"title\":\"A Framework for Blockchain-Based Secure Management of Mobile Healthcare (mHealth) Systems\",\"authors\":\"Adel Alkhalil;Abdul Razzaq;Aakash Ahmad;Magdy Abdelrhman;Yaser Altameemi;Mohammed Altamimi;Zhang Tao\",\"doi\":\"10.13052/jwe1540-9589.2431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, several research and development initiatives have focused on developing secure and trustworthy systems for the healthcare industry via pervasive and mobile healthcare (mHealth) solutions. State-of-the-art mHealth solutions primarily rely on centralized storage, such as cloud computing servers, which may escalate the maintenance costs, require ever-increasing storage infrastructure, and pose privacy and security risks to the health-critical data produced, consumed, and transmitted over ad hoc networks. To overcome these limitations, we conducted this study intending to synergize mobile computing (devices to process health-critical data) and blockchain technology (infrastructure to secure storage and retrieval of health-critical data), specifically addressing data security and privacy using a blockchain mHealth system. The research employs an incremental method by (i) developing a framework that acts as a blueprint to architect blockchain-enabled mHealth systems, (ii) implementing a suite of algorithms as a proof-of-concept to automate the framework, and (iii) experimental evaluations to validate the scalability, computation, and energy efficiency of the proposed solution. The proposed framework has been implemented as a frontend using a mobile application interface that exploits the backend via the InterPlanetary File System (IPFS) system and Ethereum blockchain for secure management of mHealth data. We use a case-study-based approach demonstrating how health units, medics, and patients can securely access and distribute health-critical data. For evaluation, we deployed a smart contract prototype on the Ethereum TESTNET network in a Windows environment to test the proposed framework. Results of the evaluation indicate (a) scalability with query response time (range: 10–41 ms), (b) computational performance (CPU utilization: 1.5% – 2.5%), and (c) energy efficiency (gas consumption: 40000 units for 1000 bytes). The proposed solution – framework, algorithms, and experimental evaluation – aims to advance state-of-the-art architecting and implementing cybersecurity mHealth solutions using blockchain technology.\",\"PeriodicalId\":49952,\"journal\":{\"name\":\"Journal of Web Engineering\",\"volume\":\"24 3\",\"pages\":\"317-354\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11037630\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Web Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11037630/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11037630/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
A Framework for Blockchain-Based Secure Management of Mobile Healthcare (mHealth) Systems
In recent years, several research and development initiatives have focused on developing secure and trustworthy systems for the healthcare industry via pervasive and mobile healthcare (mHealth) solutions. State-of-the-art mHealth solutions primarily rely on centralized storage, such as cloud computing servers, which may escalate the maintenance costs, require ever-increasing storage infrastructure, and pose privacy and security risks to the health-critical data produced, consumed, and transmitted over ad hoc networks. To overcome these limitations, we conducted this study intending to synergize mobile computing (devices to process health-critical data) and blockchain technology (infrastructure to secure storage and retrieval of health-critical data), specifically addressing data security and privacy using a blockchain mHealth system. The research employs an incremental method by (i) developing a framework that acts as a blueprint to architect blockchain-enabled mHealth systems, (ii) implementing a suite of algorithms as a proof-of-concept to automate the framework, and (iii) experimental evaluations to validate the scalability, computation, and energy efficiency of the proposed solution. The proposed framework has been implemented as a frontend using a mobile application interface that exploits the backend via the InterPlanetary File System (IPFS) system and Ethereum blockchain for secure management of mHealth data. We use a case-study-based approach demonstrating how health units, medics, and patients can securely access and distribute health-critical data. For evaluation, we deployed a smart contract prototype on the Ethereum TESTNET network in a Windows environment to test the proposed framework. Results of the evaluation indicate (a) scalability with query response time (range: 10–41 ms), (b) computational performance (CPU utilization: 1.5% – 2.5%), and (c) energy efficiency (gas consumption: 40000 units for 1000 bytes). The proposed solution – framework, algorithms, and experimental evaluation – aims to advance state-of-the-art architecting and implementing cybersecurity mHealth solutions using blockchain technology.
期刊介绍:
The World Wide Web and its associated technologies have become a major implementation and delivery platform for a large variety of applications, ranging from simple institutional information Web sites to sophisticated supply-chain management systems, financial applications, e-government, distance learning, and entertainment, among others. Such applications, in addition to their intrinsic functionality, also exhibit the more complex behavior of distributed applications.