基于混合预测方法的高级网络流量建模和预测

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Ujjwal Thakur;Sunil K. Singh;Sudhakar Kumar;Harmanjot Singh;Varsha Arya;Brij B. Gupta;Razaz Waheeb Attar;Ahmed Alhomoud;Kwok Tai Chui
{"title":"基于混合预测方法的高级网络流量建模和预测","authors":"Ujjwal Thakur;Sunil K. Singh;Sudhakar Kumar;Harmanjot Singh;Varsha Arya;Brij B. Gupta;Razaz Waheeb Attar;Ahmed Alhomoud;Kwok Tai Chui","doi":"10.13052/jwe1540-9589.2434","DOIUrl":null,"url":null,"abstract":"Web traffic analysis is crucial for optimising user experience and engagement. This research explores a hybrid approach combining traditional statistical methods, like the autoregressive integrated moving average (ARIMA) model, with advanced techniques such as long short-term memory (LSTM) neural networks and the Prophet model. ARIMA effectively captures linear trends, seasonal effects, and cyclic behaviours, while LSTM handles complex non-linear patterns, and Prophet addresses seasonal variations and missing data. The hybrid model demonstrated 93% accuracy in predicting web traffic, highlighting the benefits of integrating these methodologies. This approach enables businesses to better manage resources, boost user engagement, and improve revenue. Future research will focus on refining hybrid models by incorporating new data features and ensemble methods to further enhance prediction accuracy, ultimately advancing the understanding of web traffic trends and user behaviour.","PeriodicalId":49952,"journal":{"name":"Journal of Web Engineering","volume":"24 3","pages":"409-456"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11037626","citationCount":"0","resultStr":"{\"title\":\"Advanced Web Traffic Modelling and Forecasting with a Hybrid Predictive Approach\",\"authors\":\"Ujjwal Thakur;Sunil K. Singh;Sudhakar Kumar;Harmanjot Singh;Varsha Arya;Brij B. Gupta;Razaz Waheeb Attar;Ahmed Alhomoud;Kwok Tai Chui\",\"doi\":\"10.13052/jwe1540-9589.2434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Web traffic analysis is crucial for optimising user experience and engagement. This research explores a hybrid approach combining traditional statistical methods, like the autoregressive integrated moving average (ARIMA) model, with advanced techniques such as long short-term memory (LSTM) neural networks and the Prophet model. ARIMA effectively captures linear trends, seasonal effects, and cyclic behaviours, while LSTM handles complex non-linear patterns, and Prophet addresses seasonal variations and missing data. The hybrid model demonstrated 93% accuracy in predicting web traffic, highlighting the benefits of integrating these methodologies. This approach enables businesses to better manage resources, boost user engagement, and improve revenue. Future research will focus on refining hybrid models by incorporating new data features and ensemble methods to further enhance prediction accuracy, ultimately advancing the understanding of web traffic trends and user behaviour.\",\"PeriodicalId\":49952,\"journal\":{\"name\":\"Journal of Web Engineering\",\"volume\":\"24 3\",\"pages\":\"409-456\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11037626\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Web Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11037626/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11037626/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

网络流量分析对于优化用户体验和用户粘性至关重要。本研究探索了一种混合方法,将传统的统计方法,如自回归综合移动平均(ARIMA)模型,与长短期记忆(LSTM)神经网络和先知模型等先进技术相结合。ARIMA能够有效捕捉线性趋势、季节性影响和循环行为,而LSTM能够处理复杂的非线性模式,而Prophet能够处理季节变化和缺失数据。混合模型在预测网络流量方面显示出93%的准确率,突出了整合这些方法的好处。这种方法使企业能够更好地管理资源,提高用户参与度,并提高收益。未来的研究将集中于通过整合新的数据特征和集成方法来改进混合模型,以进一步提高预测准确性,最终提高对网络流量趋势和用户行为的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced Web Traffic Modelling and Forecasting with a Hybrid Predictive Approach
Web traffic analysis is crucial for optimising user experience and engagement. This research explores a hybrid approach combining traditional statistical methods, like the autoregressive integrated moving average (ARIMA) model, with advanced techniques such as long short-term memory (LSTM) neural networks and the Prophet model. ARIMA effectively captures linear trends, seasonal effects, and cyclic behaviours, while LSTM handles complex non-linear patterns, and Prophet addresses seasonal variations and missing data. The hybrid model demonstrated 93% accuracy in predicting web traffic, highlighting the benefits of integrating these methodologies. This approach enables businesses to better manage resources, boost user engagement, and improve revenue. Future research will focus on refining hybrid models by incorporating new data features and ensemble methods to further enhance prediction accuracy, ultimately advancing the understanding of web traffic trends and user behaviour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Web Engineering
Journal of Web Engineering 工程技术-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
62
审稿时长
9 months
期刊介绍: The World Wide Web and its associated technologies have become a major implementation and delivery platform for a large variety of applications, ranging from simple institutional information Web sites to sophisticated supply-chain management systems, financial applications, e-government, distance learning, and entertainment, among others. Such applications, in addition to their intrinsic functionality, also exhibit the more complex behavior of distributed applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信