基于空间和局部上下文增强的Swin变压器增强遥感图像语义分割

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Rong-Xing Ding;Yi-Han Xu;Gang Yu;Wen Zhou;Ding Zhou
{"title":"基于空间和局部上下文增强的Swin变压器增强遥感图像语义分割","authors":"Rong-Xing Ding;Yi-Han Xu;Gang Yu;Wen Zhou;Ding Zhou","doi":"10.1109/OJSP.2025.3573202","DOIUrl":null,"url":null,"abstract":"Semantic segmentation of remote sensing images is extensively used in crop cover and type analysis, and environmental monitoring. In the semantic segmentation of remote sensing images, owning to the specificity of remote sensing images, not only the local context is required, but also the global context information makes an important role in it. Inspired by the powerful global modelling capability of Swin Transformer, we propose the LSENet network, which follows the encoder-decoder architecture of the UNet network. In encoding phase, we propose spatial enhancement module (SEM), which helps Swin Transformer further enhance feature extraction by encoding spatial information. In decoding stage, we propose local enhancement module (LEM), which is embedded in the Swin Transformer to improve the Swin Transformer to assist the network to obtain more local semantic information so as to classify pixels more accurately, especially in the edge region, the adding of LEM enables to obtain smoother edges. The experimental results on the Vaihingen and Potsdam datasets demonstrate the effectiveness of our proposed method. Specifically, the mIoU metric is 78.58% on the Potsdam dataset, 72.59% on the Vaihingen dataset and 64.49% on the OpenEarthMap dataset.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"6 ","pages":"608-620"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11011931","citationCount":"0","resultStr":"{\"title\":\"Swin Transformer With Spatial and Local Context Augmentation for Enhanced Semantic Segmentation of Remote Sensing Images\",\"authors\":\"Rong-Xing Ding;Yi-Han Xu;Gang Yu;Wen Zhou;Ding Zhou\",\"doi\":\"10.1109/OJSP.2025.3573202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic segmentation of remote sensing images is extensively used in crop cover and type analysis, and environmental monitoring. In the semantic segmentation of remote sensing images, owning to the specificity of remote sensing images, not only the local context is required, but also the global context information makes an important role in it. Inspired by the powerful global modelling capability of Swin Transformer, we propose the LSENet network, which follows the encoder-decoder architecture of the UNet network. In encoding phase, we propose spatial enhancement module (SEM), which helps Swin Transformer further enhance feature extraction by encoding spatial information. In decoding stage, we propose local enhancement module (LEM), which is embedded in the Swin Transformer to improve the Swin Transformer to assist the network to obtain more local semantic information so as to classify pixels more accurately, especially in the edge region, the adding of LEM enables to obtain smoother edges. The experimental results on the Vaihingen and Potsdam datasets demonstrate the effectiveness of our proposed method. Specifically, the mIoU metric is 78.58% on the Potsdam dataset, 72.59% on the Vaihingen dataset and 64.49% on the OpenEarthMap dataset.\",\"PeriodicalId\":73300,\"journal\":{\"name\":\"IEEE open journal of signal processing\",\"volume\":\"6 \",\"pages\":\"608-620\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11011931\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of signal processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11011931/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11011931/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

遥感图像的语义分割在作物覆盖和类型分析、环境监测等领域有着广泛的应用。在遥感图像的语义分割中,由于遥感图像的特殊性,不仅需要局部上下文信息,全局上下文信息也在其中发挥着重要作用。受Swin Transformer强大的全局建模能力的启发,我们提出了LSENet网络,它遵循UNet网络的编码器-解码器架构。在编码阶段,我们提出了空间增强模块(SEM),通过对空间信息进行编码,帮助Swin Transformer进一步增强特征提取。在解码阶段,我们提出了局部增强模块(LEM),将其嵌入到Swin Transformer中,以改进Swin Transformer,帮助网络获得更多的局部语义信息,从而更准确地对像素进行分类,特别是在边缘区域,LEM的加入可以获得更平滑的边缘。在Vaihingen和Potsdam数据集上的实验结果表明了该方法的有效性。具体来说,波茨坦数据集的mIoU指标为78.58%,Vaihingen数据集为72.59%,OpenEarthMap数据集为64.49%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Swin Transformer With Spatial and Local Context Augmentation for Enhanced Semantic Segmentation of Remote Sensing Images
Semantic segmentation of remote sensing images is extensively used in crop cover and type analysis, and environmental monitoring. In the semantic segmentation of remote sensing images, owning to the specificity of remote sensing images, not only the local context is required, but also the global context information makes an important role in it. Inspired by the powerful global modelling capability of Swin Transformer, we propose the LSENet network, which follows the encoder-decoder architecture of the UNet network. In encoding phase, we propose spatial enhancement module (SEM), which helps Swin Transformer further enhance feature extraction by encoding spatial information. In decoding stage, we propose local enhancement module (LEM), which is embedded in the Swin Transformer to improve the Swin Transformer to assist the network to obtain more local semantic information so as to classify pixels more accurately, especially in the edge region, the adding of LEM enables to obtain smoother edges. The experimental results on the Vaihingen and Potsdam datasets demonstrate the effectiveness of our proposed method. Specifically, the mIoU metric is 78.58% on the Potsdam dataset, 72.59% on the Vaihingen dataset and 64.49% on the OpenEarthMap dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信